We know the identity:
\[ \sin 2x = 2 \sin x \cos x \]
Using this in the integrand:
\[ \sqrt{1 + \sin 2x} = \sqrt{1 + 2 \sin x \cos x} \]
Also, recall that:
\[ 1 + \sin 2x = (\sin x + \cos x)^2 \]
So:
\[ \sqrt{1 + \sin 2x} = |\sin x + \cos x| \]
In the interval \( [0, \frac{\pi}{4}] \), both \( \sin x \) and \( \cos x \) are positive, so the absolute value is not needed:
\[ \sqrt{1 + \sin 2x} = \sin x + \cos x \]
Now the integral becomes:
\[ I = \int_0^{\frac{\pi}{4}} (\sin x + \cos x) \, dx \]
Split the integral:
\[ I = \int_0^{\frac{\pi}{4}} \sin x \, dx + \int_0^{\frac{\pi}{4}} \cos x \, dx \]
Compute each part:
So:
\[ I = [-\cos x]_0^{\frac{\pi}{4}} + [\sin x]_0^{\frac{\pi}{4}} \]
Evaluate:
\[ I = (-\cos \frac{\pi}{4} + \cos 0) + (\sin \frac{\pi}{4} - \sin 0) \]
\[ I = \left( -\frac{1}{\sqrt{2}} + 1 \right) + \left( \frac{1}{\sqrt{2}} - 0 \right) \]
\[ I = \left(1 - \frac{1}{\sqrt{2}}\right) + \frac{1}{\sqrt{2}} = 1 \]
The value of the integral is:
\[ \int_0^{\frac{\pi}{4}} \sqrt{1 + \sin 2x} \, dx = \boxed{1} \]
Type of Juice | Mango | Orange | Guava |
---|---|---|---|
Selling Price (Rs./Litre) | 150 | 135 | 100 |
Variable Cost (Rs./Litre) | 80 | 65 | 60 |
Sales Mix Percentage | 20% | 40% | 40% |