Step 1: Simplify the integrand
Given integral:
\[
\int_0^{\frac{\pi}{4}} \frac{\cos^2 x}{\cos^2 x + 4 \sin^2 x} \, dx
\]
Rewrite denominator:
\[
\cos^2 x + 4 \sin^2 x = \cos^2 x + 4 (1 - \cos^2 x) = 4 - 3 \cos^2 x
\]
Step 2: Express integral using cosine only
\[
\int_0^{\frac{\pi}{4}} \frac{\cos^2 x}{4 - 3 \cos^2 x} \, dx
\]
Step 3: Use substitution for easier integration
Let \( t = \tan x \), then \( dx = \frac{dt}{1 + t^2} \), and
\[
\cos^2 x = \frac{1}{1 + t^2}
\]
Substitute in the integral:
\[
\int_0^1 \frac{\frac{1}{1 + t^2}}{4 - 3 \frac{1}{1 + t^2}} \cdot \frac{dt}{1 + t^2} = \int_0^1 \frac{1}{(1 + t^2)(4 - \frac{3}{1 + t^2})} \, dt
\]
Simplify denominator inside integral:
\[
4 - \frac{3}{1 + t^2} = \frac{4(1 + t^2) - 3}{1 + t^2} = \frac{4 + 4t^2 - 3}{1 + t^2} = \frac{1 + 4 t^2}{1 + t^2}
\]
So integrand becomes:
\[
\frac{1}{(1 + t^2)} \cdot \frac{1 + t^2}{1 + 4 t^2} = \frac{1}{1 + 4 t^2}
\]
Step 4: Integral reduces to
\[
\int_0^1 \frac{1}{1 + 4 t^2} dt = \int_0^1 \frac{1}{1 + (2t)^2} dt
\]
Step 5: Evaluate the integral
\[
\int \frac{1}{1 + (2t)^2} dt = \frac{1}{2} \tan^{-1} (2 t) + C
\]
Apply limits:
\[
= \frac{1}{2} \left[ \tan^{-1} (2 \times 1) - \tan^{-1} (0) \right] = \frac{1}{2} \tan^{-1} 2
\]
Step 6: Reconsider original integral expression
Wait, step 3 shows an inconsistency in substitution since the integral simplified too much.
Let's solve integral using a different approach:
Alternate Step 1: Express integrand in terms of \(\tan x\)
Rewrite denominator:
\[
\cos^2 x + 4 \sin^2 x = \cos^2 x + 4 \sin^2 x = \cos^2 x (1 + 4 \tan^2 x)
\]
So integrand becomes:
\[
\frac{\cos^2 x}{\cos^2 x (1 + 4 \tan^2 x)} = \frac{1}{1 + 4 \tan^2 x}
\]
Since \( dx = \frac{dt}{1 + t^2} \) for \( t = \tan x \), integral becomes:
\[
\int_0^1 \frac{1}{1 + 4 t^2} \cdot \frac{dt}{1 + t^2}
\]
Step 7: Evaluate
This integral is
\[
I = \int_0^1 \frac{dt}{(1 + t^2)(1 + 4 t^2)}
\]
Use partial fractions:
\[
\frac{1}{(1 + t^2)(1 + 4 t^2)} = \frac{A}{1 + t^2} + \frac{B}{1 + 4 t^2}
\]
Multiply both sides:
\[
1 = A(1 + 4 t^2) + B(1 + t^2) = (A + B) + (4A + B) t^2
\]
Equate coefficients:
\[
A + B = 1, \quad 4A + B = 0
\]
Solving:
\[
B = 1 - A
\]
\[
4A + 1 - A = 0 \implies 3A = -1 \implies A = -\frac{1}{3}, \quad B = 1 - \left(-\frac{1}{3}\right) = \frac{4}{3}
\]
Step 8: Write integral as sum
\[
I = \int_0^1 \frac{-\frac{1}{3}}{1 + t^2} dt + \int_0^1 \frac{\frac{4}{3}}{1 + 4 t^2} dt = -\frac{1}{3} \int_0^1 \frac{dt}{1 + t^2} + \frac{4}{3} \int_0^1 \frac{dt}{1 + 4 t^2}
\]
Step 9: Integrate
\[
\int_0^1 \frac{dt}{1 + t^2} = \tan^{-1} 1 - \tan^{-1} 0 = \frac{\pi}{4}
\]
\[
\int_0^1 \frac{dt}{1 + 4 t^2} = \frac{1}{2} \tan^{-1} (2 t) \bigg|_0^1 = \frac{1}{2} \tan^{-1} 2
\]
Step 10: Combine results
\[
I = -\frac{1}{3} \cdot \frac{\pi}{4} + \frac{4}{3} \cdot \frac{1}{2} \tan^{-1} 2 = -\frac{\pi}{12} + \frac{2}{3} \tan^{-1} 2
\]
Final answer:
\[
\boxed{ -\frac{\pi}{12} + \frac{2}{3} \tan^{-1} 2 }
\]