Step 1: Write the integral clearly
\[
I = \int_0^{\frac{\pi}{2}} \frac{\sin \left( \frac{\pi}{4} + x \right) + \sin \left( \frac{3\pi}{4} + x \right)}{\cos x + \sin x} \, dx
\]
Step 2: Use the sum-to-product identity for the numerator
Recall that:
\[
\sin A + \sin B = 2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)
\]
Apply it with \(A = \frac{\pi}{4} + x\) and \(B = \frac{3\pi}{4} + x\):
\[
\sin \left( \frac{\pi}{4} + x \right) + \sin \left( \frac{3\pi}{4} + x \right) = 2 \sin \left( \frac{\frac{\pi}{4} + x + \frac{3\pi}{4} + x}{2} \right) \cos \left( \frac{\frac{\pi}{4} + x - \left(\frac{3\pi}{4} + x\right)}{2} \right)
\]
Simplify inside the functions:
\[
= 2 \sin \left( \frac{\pi + 2x}{2} \right) \cos \left( \frac{-\pi/2}{2} \right) = 2 \sin \left( \frac{\pi}{2} + x \right) \cos \left( -\frac{\pi}{4} \right)
\]
Since \(\cos (-\theta) = \cos \theta\),
\[
= 2 \sin \left( \frac{\pi}{2} + x \right) \cos \frac{\pi}{4} = 2 \sin \left( \frac{\pi}{2} + x \right) \times \frac{1}{\sqrt{2}} = \sqrt{2} \sin \left( \frac{\pi}{2} + x \right)
\]
Step 3: Simplify \(\sin \left( \frac{\pi}{2} + x \right)\)
\[
\sin \left( \frac{\pi}{2} + x \right) = \cos x
\]
Step 4: Rewrite the integral
\[
I = \int_0^{\frac{\pi}{2}} \frac{\sqrt{2} \cos x}{\cos x + \sin x} \, dx = \sqrt{2} \int_0^{\frac{\pi}{2}} \frac{\cos x}{\cos x + \sin x} \, dx
\]
Step 5: Evaluate the integral inside
Let:
\[
I_1 = \int_0^{\frac{\pi}{2}} \frac{\cos x}{\cos x + \sin x} \, dx
\]
Rewrite denominator:
\[
\cos x + \sin x = \sqrt{2} \sin \left( x + \frac{\pi}{4} \right)
\]
But here, instead of substitution, consider:
\[
I_1 = \int_0^{\frac{\pi}{2}} \frac{\cos x + \sin x - \sin x}{\cos x + \sin x} \, dx = \int_0^{\frac{\pi}{2}} \left( 1 - \frac{\sin x}{\cos x + \sin x} \right) dx
\]
So,
\[
I_1 = \int_0^{\frac{\pi}{2}} 1 \, dx - \int_0^{\frac{\pi}{2}} \frac{\sin x}{\cos x + \sin x} \, dx = \frac{\pi}{2} - I_2
\]
where
\[
I_2 = \int_0^{\frac{\pi}{2}} \frac{\sin x}{\cos x + \sin x} \, dx
\]
Step 6: Note the symmetry
By symmetry,
\[
I_1 = I_2
\]
because if we replace \(x\) by \(\frac{\pi}{2} - x\), \(\cos x\) and \(\sin x\) interchange.
Step 7: Use \(I_1 + I_2 = \int_0^{\frac{\pi}{2}} \frac{\cos x + \sin x}{\cos x + \sin x} dx = \int_0^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2}\)
Since \(I_1 = I_2\),
\[
2 I_1 = \frac{\pi}{2} \implies I_1 = \frac{\pi}{4}
\]
Step 8: Calculate the original integral
\[
I = \sqrt{2} \times I_1 = \sqrt{2} \times \frac{\pi}{4} = \frac{\pi}{2 \sqrt{2}}
\]
Final Answer:
\[
\int_0^{\frac{\pi}{2}} \frac{\sin \left( \frac{\pi}{4} + x \right) + \sin \left( \frac{3\pi}{4} + x \right)}{\cos x + \sin x} \, dx = \frac{\pi}{2 \sqrt{2}}
\]