We are given the integral:
\[
\int_0^{\frac{\pi}{2}} \frac{\sin \left( \frac{\pi}{4} + x \right) + \sin \left( \frac{3\pi}{4} + x \right)}{\cos x + \sin x} \, dx
\]
Step 1: Use the sum of sines identity \( \sin A + \sin B = 2 \sin \left( \frac{A+B}{2} \right) \cos \left( \frac{A-B}{2} \right) \) to simplify the numerator.
Step 2: Simplify the denominator using the identity \( \cos x + \sin x = \sqrt{2} \sin \left( x + \frac{\pi}{4} \right) \).
Step 3: The integral becomes a simpler trigonometric integral, and after solving, we find the result:
\[
\frac{\pi}{2\sqrt{2}}
\]
% Final Answer
The value of the integral is \( \frac{\pi}{2\sqrt{2}} \).