Step 1: Complete the square in the denominator.
The denominator is \( x^2 + 2x + 10 \). To complete the square, we write:
\[
x^2 + 2x + 10 = (x + 1)^2 + 9
\]
Step 2: Use the standard formula for integrals.
Now, the integral becomes:
\[
\int_0^5 \frac{dx}{(x+1)^2 + 3^2}
\]
This is a standard arctangent integral of the form \( \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) \).
Step 3: Evaluate the integral.
Applying the formula, we get:
\[
\frac{1}{3} \left[ \tan^{-1} \left( \frac{x+1}{3} \right) \right]_0^5
\]
Substituting the limits:
\[
= \frac{1}{3} \left( \tan^{-1} \left( \frac{6}{3} \right) - \tan^{-1} \left( \frac{1}{3} \right) \right)
= \frac{1}{3} \left( \frac{\pi}{3} - \frac{1}{3} \right) = \frac{\pi}{12}
\]
Step 4: Conclusion.
Thus, the value of the integral is \( \frac{\pi}{12} \).