Question:

Using the truth table, verify \( p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \).

Show Hint

When constructing a truth table for \(n\) variables, there will be \(2^n\) rows. Be systematic in listing all possible combinations of T and F to ensure you don't miss any cases.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

We construct a truth table to evaluate both sides of the equivalence. \begin{tabular}{|c|c|c|c|c|c|c|c|} \hline \(p\) & \(q\) & \(r\) & \(q \land r\) & \(p \lor (q \land r)\) & \(p \lor q\) & \(p \lor r\) & \((p \lor q) \land (p \lor r)\)
\hline T & T & T & T & T & T & T & T
T & T & F & F & T & T & T & T
T & F & T & F & T & T & T & T
T & F & F & F & T & T & T & T
F & T & T & T & T & T & T & T
F & T & F & F & F & T & F & F
F & F & T & F & F & F & T & F
F & F & F & F & F & F & F & F
\hline \end{tabular} Since the truth values in the columns for \( p \lor (q \land r) \) and \( (p \lor q) \land (p \lor r) \) are identical for all possible truth values of \(p, q, \) and \(r\), the given equivalence (the distributive law) is verified.
Was this answer helpful?
0
0