Step 1: Substituting a Trigonometric Identity
Let:
\[
x = 2 \sin \theta, \quad dx = 2 \cos \theta \, d\theta.
\]
Rewriting the integral in terms of \( \theta \):
\[
I = \int \sqrt{\frac{2 + 2\sin\theta}{2 - 2\sin\theta}} \cdot 2 \cos\theta \, d\theta.
\]
Step 2: Simplifying the Expression
\[
I = \int \sqrt{\frac{1 + \sin\theta}{1 - \sin\theta}} \cdot 2 \cos\theta \, d\theta.
\]
Using the identity:
\[
\sqrt{\frac{1 + \sin\theta}{1 - \sin\theta}} = \tan\left(\frac{\pi}{4} + \frac{\theta}{2} \right),
\]
\[
I = \int 2 \tan\left(\frac{\pi}{4} + \frac{\theta}{2} \right) \cos\theta \, d\theta.
\]
Splitting the integral:
\[
I = 2 \int \tan\left(\frac{\pi}{4} + \frac{\theta}{2} \right) \cos\theta \, d\theta.
\]
Step 3: Evaluating the Integral
After integration and simplification:
\[
I = \frac{\pi}{3} + 2 - \sqrt{3}.
\]
Step 4: Conclusion
Thus, the final answer is:
\[
\boxed{\frac{\pi}{3} + 2 - \sqrt{3}}.
\]