Step 1: Write the integral clearly
\[
I = \int_0^1 \left( \sqrt{10} \right)^{2x} \, dx
\]
Step 2: Simplify the integrand
Recall that \(\sqrt{10} = 10^{1/2}\).
So,
\[
\left( \sqrt{10} \right)^{2x} = \left( 10^{1/2} \right)^{2x} = 10^{x}
\].
Step 3: Rewrite the integral
\[
I = \int_0^1 10^{x} \, dx
\].
Step 4: Integrate using the exponential formula
Recall the formula:
\[
\int a^{x} \, dx = \frac{a^{x}}{\ln a} + C
\], where \(a > 0, a \neq 1\).
Apply it here:
\[
I = \left[ \frac{10^{x}}{\ln 10} \right]_0^1 = \frac{10^{1} - 10^{0}}{\ln 10} = \frac{10 - 1}{\ln 10} = \frac{9}{\ln 10}
\].
Final Answer:
\[
\int_0^1 \left( \sqrt{10} \right)^{2x} \, dx = \frac{9}{\log 10}
\].
(Note: \(\ln\) and \(\log\) are used interchangeably here as natural logarithm.)