We are given the integral:
\[
I = \int_0^1 \left( \sqrt{10} \right)^{2x} \, dx = \int_0^1 10^x \, dx
\]
Step 1: Rewrite the integrand as \( 10^x \).
Step 2: The integral of \( 10^x \) is:
\[
\int 10^x \, dx = \frac{10^x}{\log 10}
\]
Step 3: Evaluate the integral from 0 to 1:
\[
I = \left[ \frac{10^x}{\log 10} \right]_0^1 = \frac{10^1 - 10^0}{\log 10} = \frac{10 - 1}{\log 10} = \frac{9}{\log 10}
\]
Thus, the correct answer is \( \frac{9}{\log 10} \).
% Final Answer
The value of the integral is \( \frac{9}{\log 10} \).