Evaluate the integral: \[ I = \int_{-\frac{\pi}{15}}^{\frac{\pi}{15}} \frac{\cos 5x}{1 + e^{5x}} \, dx \]
\( \frac{1}{10} \)
Step 1: Using the Property \( f(x) + f(-x) \) Define: \[ I = \int_{-\frac{\pi}{15}}^{\frac{\pi}{15}} \frac{\cos 5x}{1 + e^{5x}} \, dx \] Using the property: \[ \int_{-a}^{a} f(x) \, dx = \int_{-a}^{a} f(-x) \, dx \] Substituting \( x \to -x \), we get: \[ I = \int_{-\frac{\pi}{15}}^{\frac{\pi}{15}} \frac{\cos(-5x)}{1 + e^{-5x}} \, dx \] Since \( \cos(-5x) = \cos 5x \), we rewrite: \[ I = \int_{-\frac{\pi}{15}}^{\frac{\pi}{15}} \frac{\cos 5x}{1 + e^{-5x}} \, dx \] Using the property \( e^{-5x} = \frac{1}{e^{5x}} \), we obtain: \[ \frac{\cos 5x}{1 + e^{-5x}} = \frac{\cos 5x}{1 + \frac{1}{e^{5x}}} \] Multiplying numerator and denominator by \( e^{5x} \), we get: \[ = \frac{e^{5x} \cos 5x}{e^{5x} + 1} \] Now, add the two equations for \( I \): \[ I + I = \int_{-\frac{\pi}{15}}^{\frac{\pi}{15}} \frac{\cos 5x}{1 + e^{5x}} \, dx + \int_{-\frac{\pi}{15}}^{\frac{\pi}{15}} \frac{e^{5x} \cos 5x}{e^{5x} + 1} \, dx \] Since the integrals are equal in magnitude, the sum simplifies and gives us: \[ 2I = \int_{-\frac{\pi}{15}}^{\frac{\pi}{15}} \cos 5x \, dx \] The integral of \( \cos 5x \) over symmetric limits \([-a, a]\) is zero, so we get: \[ I = \frac{\sqrt{3}}{10} \]
\[ \lim_{x \to -\frac{3}{2}} \frac{(4x^2 - 6x)(4x^2 + 6x + 9)}{\sqrt{2x - \sqrt{3}}} \]
\[ f(x) = \begin{cases} \frac{(4^x - 1)^4 \cot(x \log 4)}{\sin(x \log 4) \log(1 + x^2 \log 4)}, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases} \]
Find \( e^k \) if \( f(x) \) is continuous at \( x = 0 \).