Step 1: Substituting \( u = 3\cos x + 4\sin x \)
Let:
\[
u = 3\cos x + 4\sin x.
\]
Differentiating both sides:
\[
du = (-3\sin x + 4\cos x) dx.
\]
Rewriting the integral:
\[
I = \int \frac{\csc x dx}{u}.
\]
Using the logarithmic integration formula,
\[
\int \frac{du}{u} = \ln |u| + C,
\]
we obtain:
\[
I = \frac{1}{3} \log \left| \frac{\sin x}{3\cos x + 4\sin x} \right| + C.
\]