At z = 1, the value of the given function takes the form 0/0. Put so that z →1 as x →1. \(\lim_{z\rightarrow 1}\)\(\frac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}\) Accordingly \(\lim_{z\rightarrow 1}\)\(\frac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}\) = \(\lim_{x\rightarrow 1}\)\(\frac{x^2-1}{x-1}\) =\(\lim_{x\rightarrow 1}\)\(\frac{x^2-1}{x-1}\) =2.1 2-1 [\(\lim_{x\rightarrow a}\)\(\frac{x^n-a^n}{x-a}\) = nan-1] =2 ∴\(\lim_{z\rightarrow 1}\)\(\frac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}\) = 2