\(\lim_{x\rightarrow \pi}\)\(\frac{sin(\pi-x)}{\pi(\pi-x)}\) It is seen that \(x\rightarrow \pi\)\(\Rightarrow\) (\(\pi\) - x ) \(\rightarrow\)0 ∴\(\lim_{x\rightarrow \pi}\)\(\frac{sin(\pi-x)}{\pi(\pi-x)}\) = \(\frac{1}{\pi}\)\(\lim_{\pi-x\rightarrow \pi}\)\(\frac{sin(\pi-x)}{(\pi-x)}\) = \(\frac{1}{\pi}\)\(\times\)1 [\(\lim_{y\rightarrow \pi}\)\(\frac{sin\,y}{y}\) = 1] =\(\frac{1}{\pi}\)