Question:

Evaluate the Given limit: \(\lim_{x\rightarrow \pi}\) \(\frac{sin(\pi-x)}{\pi(\pi-x)}\)

Updated On: Oct 23, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

\(\lim_{x\rightarrow \pi}\) \(\frac{sin(\pi-x)}{\pi(\pi-x)}\)
It is seen that \(x\rightarrow \pi\)\(\Rightarrow\) (\(\pi\) - x ) \(\rightarrow\)
\(\lim_{x\rightarrow \pi}\) \(\frac{sin(\pi-x)}{\pi(\pi-x)}\) = \(\frac{1}{\pi}\) \(\lim_{\pi-x\rightarrow \pi}\) \(\frac{sin(\pi-x)}{(\pi-x)}\)
\(\frac{1}{\pi}\)\(\times\)1 [\(\lim_{y\rightarrow \pi}\)\(\frac{sin\,y}{y}\) = 1]
=\(\frac{1}{\pi}\)
Was this answer helpful?
0
0