>
Exams
>
Mathematics
>
Limits
>
evaluate the given limit x 0 sinax bx ax sinbx a b
Question:
Evaluate the Given limit:
\(\lim_{x\rightarrow 0}\)
sinax =
\(\frac{bx}{ax}\)
+ sinbx a,b,a+b ≠ 0
CBSE Class XI
Updated On:
Oct 23, 2023
Hide Solution
Verified By Collegedunia
Solution and Explanation
\(\lim_{x\rightarrow 0}\,sin\,ax\)
=
\(\frac{bx}{ax}+sin\,bx\)
At x = 0, the value of the given function takes the form 0/0.
Now,
=
\(\lim_{x\rightarrow 0}\)
\(sin\,ax\)
=
\(\frac{bx}{ax}+sin\,bx\)
=
\(\lim_{x\rightarrow 0}\)
(
\(\frac{sin\,ax}{ax}\)
) ax +
\(\frac{bx}{ax}\)
+ bx(
\(\frac{sin\,bx}{bx}\)
)
=(
\(\lim_{ax\rightarrow 0}\)
\(\frac{sin\,ax}{ax}\)
)
\(\times\)
\(\lim_{x\rightarrow 0}\)
(ax) +
\(\lim_{x\rightarrow 0}\)
bx /
\(\lim_{x\rightarrow 0}\)
(ax) + (
\(\lim_{bx\rightarrow 0}\)
\(\frac{sin\,bx}{bx}\)
) [As x
\(\rightarrow\)
0
\(\Rightarrow\)
ax
\(\rightarrow\)
0 and bx
\(\rightarrow\)
0]
=
\(\frac{\lim_{x\rightarrow 0}(ax)\lim_{x\rightarrow 0}bx}{\lim_{x\rightarrow 0}ax+\lim_{x\rightarrow 0}bx}\)
=
\(\frac{\lim_{x\rightarrow 0}(ax+bx)}{\lim_{x\rightarrow 0}(ax+bx)}\)
=
\(\lim_{x\rightarrow 0}\)
(1)
=1
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Limits
If
\[ \lim_{x \to \infty} \left( \frac{e}{1 - e} \left( \frac{1}{e} - \frac{x}{1 + x} \right) \right)^x = \alpha, \] then the value of \[ \frac{\log_e \alpha}{1 + \log_e \alpha} \] equals:
JEE Main - 2025
Mathematics
Limits
View Solution
Let
\[ f(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \left( \frac{\tan \left( \frac{x}{2^{r+1}} \right) + \tan^3 \left( \frac{x}{2^{r+1}} \right)}{1 - \tan^2 \left( \frac{x}{2^{r+1}} \right)} \right) \] Then, \( \lim_{x \to 0} \frac{e^x - e^{f(x)}}{x - f(x)} \) is equal to:
JEE Main - 2025
Mathematics
Limits
View Solution
If
\[ \lim_{x \to \infty} \left( \frac{e}{1 - e} \left( \frac{1}{e} - \frac{x}{1 + x} \right) \right)^x = \alpha, \] then the value of \[ \frac{\log_e \alpha}{1 + \log_e \alpha} \] equals:
JEE Main - 2025
Mathematics
Limits
View Solution
Evaluate \( \int_{0}^{\pi/4} \frac{\cos^2 x}{\cos^2 x + 4 \sin^2 x} \, dx \):
MHT CET - 2024
Mathematics
Limits
View Solution
$\lim_{n \to \infty} \left(\frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + 3^2 + \dots + \frac{1}{5n}} \right) =$
KCET - 2024
Mathematics
Limits
View Solution
View More Questions
Questions Asked in CBSE Class XI exam
Consider the reactions:
H
3
PO
2
(aq) + 4 AgNO
3
(aq) + 2 H
2
O
(l)
\(\rightarrow\)
H
3
PO
4
(aq) + 4Ag
(s)
+ 4HNO
3
(aq)
H
3
PO
2
(aq) + 2CuSO
4
(aq) + 2 H
2
O
(l)
\(\rightarrow\)
H
3
PO
4
(aq) + 2Cu
(s)
+ H
2
SO
4(aq)
C
6
H
5
CHO
(l)
+ 2[Ag (NH
3
)
2
]
+
(aq)
+ 3OH
-
(aq)
\(\rightarrow\)
C
6
H
5
COO
-
(aq)
+ 2Ag
(s)
+ 4NH
3
(aq) + 2 H
2
O
(l)
C
6
H
5
CHO
(l)
+ 2Cu
2+
(aq)
+ 5OH
-
(aq)
\(\rightarrow\)
No change observed.
What inference do you draw about the behaviour of Ag
+
and Cu
2+
from these reactions?
CBSE Class XI
Redox Reactions In Terms Of Electron Transfer Reactions
View Solution
Find
\((x + 1)^6 - (x - 1)^6\)
. Hence or otherwise evaluate
\((\sqrt2 + 1)^6 + (\sqrt2 - 1)^6.\)
CBSE Class XI
Binomial Theorem for Positive Integral Indices
View Solution
If U = {a, b, c, d, e, f, g, h}, find the complements of the following sets:
(i) A = {a, b, c}
(ii) B = {d, e, f, g}
(iii) C = {a, c, e, g}
(iv) D = {f, g, h, a}
CBSE Class XI
Complement of a Set
View Solution
Consider the following species: N
3-
, O
2-
, F
-
, Na
+
, Mg
2+
and Al
3+
What is common in them?
Arrange them in the order of increasing ionic radii.
CBSE Class XI
Modern Periodic Law And The Present Form Of The Periodic Table
View Solution
Find and write down structures of 10 interesting small molecular weight biomolecules. Find if there is any industry which manufactures the compounds by isolation. Find out who are the buyers.
CBSE Class XI
How To Analyse Chemical Composition?
View Solution
View More Questions