At x = 0, the value of the given function takes the form 0/0. \(\lim_{x\rightarrow 0}\)\(\frac{sin\,ax}{bx}\)= \(\lim_{x\rightarrow 0}\)\(\frac{sin\,ax}{bx}\)\(\times\)\(\frac{ax}{bx}\) \(\lim_{x\rightarrow 0}\) (\(\frac{sin\,ax}{bx}\)) (\(\frac{a}{b}\)) \(\frac{a}{b}\)\(\lim_{ax\rightarrow 0}\) (\(\frac{sin\,ax}{ax}\)) [x\(\rightarrow\)0 \(\Rightarrow\) ax \(\rightarrow\) 0] =\(\frac{a}{b}\times 1\) [lim y\(\rightarrow\)0 \(\frac{sin\,y}{y}\) = 1] = \(\frac{a}{b}\)