If $\lim_{x \to 1} \frac{(x-1)(6+\lambda \cos(x-1)) + \mu \sin(1-x)}{(x-1)^3} = -1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda + \mu$ is equal to
take on sth: | to begin to have a particular quality or appearance; to assume sth |
take sb on: | to employ sb; to engage sb to accept sb as one’s opponent in a game, contest or conflict |
take sb/sth on: | to decide to do sth; to allow sth/sb to enter e.g. a bus, plane or ship; to take sth/sb on board |