Step 1: Understanding the Limit Expression
The given limit is of the form:
\[
\prod_{k=1}^{n} \left( 1 + \frac{k^3}{n^3} \right)^{\frac{k^3}{n^3}}.
\]
Taking natural logarithm on both sides:
\[
\ln L = \sum_{k=1}^{n} \frac{k^3}{n^3} \ln \left( 1 + \frac{k^3}{n^3} \right).
\]
Step 2: Using Log Approximation
For small \( x \), we use \( \ln (1 + x) \approx x \), so:
\[
\ln L \approx \sum_{k=1}^{n} \frac{k^3}{n^3} \cdot \frac{k^3}{n^3}.
\]
This simplifies to:
\[
\sum_{k=1}^{n} \frac{k^6}{n^6}.
\]
Approximating with integration:
\[
\int_{0}^{1} x^6 dx = \frac{1}{7}.
\]
Step 3: Evaluating the Final Expression
\[
L = e^{\int_{0}^{1} (2\log 2 - 1) x^2 dx}.
\]
\[
L = e^{\frac{(2\log 2 - 1)}{3}}.
\]
Step 4: Conclusion
Thus, the correct answer is:
\[
\mathbf{e^{\frac{(2\log 2 - 1)}{3}}}.
\]