We are tasked with evaluating the following limit:
\[
\lim_{\theta \to -\frac{\pi}{4}} \frac{\cos\theta + \sin\theta}{\theta + \frac{\pi}{4}}.
\]
Step 1: Simplify the denominator.
Let \( \theta + \frac{\pi}{4} = h \). As \( \theta \to -\frac{\pi}{4} \), we have \( h \to 0 \), and the expression becomes:
\[
\lim_{h \to 0} \frac{\cos\left(\frac{\pi}{4} - h\right) + \sin\left(\frac{\pi}{4} - h\right)}{h}.
\]
Step 2: Apply trigonometric identities to simplify the numerator.
Using the angle subtraction identities for cosine and sine:
\[
\cos\left(\frac{\pi}{4} - h\right) = \cos\frac{\pi}{4}\cos h + \sin\frac{\pi}{4}\sin h,
\]
\[
\sin\left(\frac{\pi}{4} - h\right) = \sin\frac{\pi}{4}\cos h - \cos\frac{\pi}{4}\sin h.
\]
Adding these two expressions together:
\[
\cos\left(\frac{\pi}{4} - h\right) + \sin\left(\frac{\pi}{4} - h\right) = \left(\cos\frac{\pi}{4} + \sin\frac{\pi}{4}\right)\cos h + \left(\sin\frac{\pi}{4} - \cos\frac{\pi}{4}\right)\sin h.
\]
Since \( \cos\frac{\pi}{4} = \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}} \), the expression simplifies to:
\[
\cos\left(\frac{\pi}{4} - h\right) + \sin\left(\frac{\pi}{4} - h\right) = \sqrt{2}\cos h.
\]
Step 3: Compute the limit.
Substituting the simplified numerator back into the limit:
\[
\lim_{h \to 0} \frac{\sqrt{2}\cos h}{h}.
\]
As \( h \to 0 \), \( \cos h \to 1 \), so the limit evaluates to:
\[
\sqrt{2}.
\]
Final Answer:
The value of the limit is:
\[
\boxed{\sqrt{2}}.
\]