Evaluate the following determinant: \( \begin{vmatrix} 1 & 1 & 1 \\ a^2 & {b^2} & {c^2} \\ {a^3} & {b^3} & {c^3} \\ \end{vmatrix} \)
Step 1: Apply Row or Column Operations
We'll apply column operations to simplify the determinant.
\( C_2 \rightarrow C_2 - C_1, \quad C_3 \rightarrow C_3 - C_1 \)
The determinant becomes:
\( \Delta = \begin{vmatrix} 1 & 0 & 0 \\ a^2 & b^2 - a^2 & c^2 - a^2 \\ a^3 & b^3 - a^3 & c^3 - a^3 \end{vmatrix} \)
Expanding along the first row:
\( \Delta = \begin{vmatrix} b^2 - a^2 & c^2 - a^2 \\ b^3 - a^3 & c^3 - a^3 \end{vmatrix} \)
Step 2: Factorize Terms Using Algebraic Identities
Using the factorization identities:
\( b^3 - a^3 = (b - a)(b^2 + ab + a^2) \)
\( c^3 - a^3 = (c - a)(c^2 + ac + a^2) \)
\( b^2 - a^2 = (b - a)(b + a) \)
\( c^2 - a^2 = (c - a)(c + a) \)
Thus,
\( \Delta = \begin{vmatrix} (b-a)(b+a) & (c-a)(c+a) \\ (b-a)(b^2 + ab + a^2) & (c-a)(c^2 + ac + a^2) \end{vmatrix} \)
Step 3: Factor Out Common Terms
Factoring out common terms:
\( \Delta = (b - a)(c - a) \begin{vmatrix} b + a & c + a \\ b^2 + ab + a^2 & c^2 + ac + a^2 \end{vmatrix} \)
Step 4: Evaluate the Remaining Determinant
Expanding the remaining determinant:
\( \begin{vmatrix} b + a & c + a \\ b^2 + ab + a^2 & c^2 + ac + a^2 \end{vmatrix} = (b + a)(c^2 + ac + a^2) - (c + a)(b^2 + ab + a^2) \)
Expanding each term:
\( = (b + a)(c^2 + ac + a^2) - (c + a)(b^2 + ab + a^2) \)
Expanding fully:
\( = b c^2 + a c^2 + abc + a^2c + a b^2 + a^2b + a^3 - (cb^2 + ab^2 + a^2b + a^3 + b c^2 + abc + a^2c + a^3) \)
Upon simplifying, this reduces to:
\( = (a - b)(b - c)(c - a)(ab + bc + ca) \)
Step 5: Final Answer
\( \Delta = (a - b)(b - c)(c - a)(ab + bc + ca) \)
Final Answer: (4) \( (a - b)(b - c)(c - a)(ab + bc + ca) \)

Then, which one of the following is TRUE?
Consider the balanced transportation problem with three sources \( S_1, S_2, S_3 \), and four destinations \( D_1, D_2, D_3, D_4 \), for minimizing the total transportation cost whose cost matrix is as follows:

where \( \alpha, \lambda>0 \). If the associated cost to the starting basic feasible solution obtained by using the North-West corner rule is 290, then which of the following is/are correct?
Let $ A = \begin{bmatrix} 2 & 2 + p & 2 + p + q \\4 & 6 + 2p & 8 + 3p + 2q \\6 & 12 + 3p & 20 + 6p + 3q \end{bmatrix} $ If $ \text{det}(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n, \, m, n \in \mathbb{N}, $ then $ m + n $ is equal to:
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))