Let
\[
I = \cos^2 76^\circ + \cos^2 16^\circ - \cos 76^\circ \cos 16^\circ
\]
We can rewrite \( I \) as:
\[
I = \cos^2 (60^\circ + 16^\circ) + \cos^2 16^\circ - \cos (60^\circ + 16^\circ) \cos 16^\circ
\]
Using the identity \( \cos(A + B) = \cos A \cos B - \sin A \sin B \), we get:
\[
I = \left( \cos 60^\circ \cos 16^\circ - \sin 60^\circ \sin 16^\circ \right)^2 + \cos^2 16^\circ - \left( \cos 60^\circ \cos 16^\circ - \sin 60^\circ \sin 16^\circ \right) \cos 16^\circ
\]
Now, expanding the terms:
\[
I = \cos^2 16^\circ \left( 4 \right) + 3 \sin^2 16^\circ \left( 4 \right) - \sqrt{3} \cos 16^\circ \sin 16^\circ \left( 2 \right) + \cos^2 16^\circ - \cos^2 16^\circ \left( 2 \right) + \sqrt{3} \cos 16^\circ \sin 16^\circ \left( 2 \right)
\]
Simplifying further:
\[
I = 3 \cos^2 16^\circ \left( 4 \right) + 3 \sin^2 16^\circ \left( 4 \right)
\]
Thus, the final result is:
\[
I = \frac{3}{4}
\]