We are asked to evaluate the expression:
\[ \frac{\cos 10^\circ + \cos 80^\circ}{\sin 80^\circ - \sin 10^\circ}. \]Step 1: Apply the sum-to-product identity for cosines.
Using the identity:
with \( A = 10^\circ \) and \( B = 80^\circ \), we get:
\[ \cos 10^\circ + \cos 80^\circ = 2 \cos 45^\circ \cos (-35^\circ). \]Since cosine is an even function, \( \cos (-35^\circ) = \cos 35^\circ \), so:
\[ \cos 10^\circ + \cos 80^\circ = 2 \times \frac{\sqrt{2}}{2} \times \cos 35^\circ = \sqrt{2} \cos 35^\circ. \]Step 2: Apply the sum-to-product identity for sines.
Using the identity:
with \( A = 80^\circ \) and \( B = 10^\circ \), we get:
\[ \sin 80^\circ - \sin 10^\circ = 2 \cos 45^\circ \sin 35^\circ. \]Since \( \cos 45^\circ = \frac{\sqrt{2}}{2} \), this simplifies to:
\[ \sin 80^\circ - \sin 10^\circ = \sqrt{2} \sin 35^\circ. \]Step 3: Simplify the overall expression.
Substitute the simplified numerator and denominator:
Recall that:
\[ \cot 35^\circ = \tan (90^\circ - 35^\circ) = \tan 55^\circ. \]Final answer:
\[ \boxed{\tan 55^\circ}. \]Given that $\sin \theta + \cos \theta = x$, prove that $\sin^4 \theta + \cos^4 \theta = \dfrac{2 - (x^2 - 1)^2}{2}$.