We are asked to evaluate the expression:
\[
\frac{\cos 10^\circ + \cos 80^\circ}{\sin 80^\circ - \sin 10^\circ}.
\]
Step 1: Use sum-to-product identities.
We can simplify both the numerator and the denominator using the sum-to-product identities for trigonometric functions.
The sum-to-product identity for cosines is:
\[
\cos A + \cos B = 2 \cos \left( \frac{A+B}{2} \right) \cos \left( \frac{A-B}{2} \right).
\]
Substituting \( A = 10^\circ \) and \( B = 80^\circ \), we get:
\[
\cos 10^\circ + \cos 80^\circ = 2 \cos \left( \frac{10^\circ + 80^\circ}{2} \right) \cos \left( \frac{10^\circ - 80^\circ}{2} \right)
= 2 \cos 45^\circ \cos (-35^\circ).
\]
Since \( \cos(-35^\circ) = \cos 35^\circ \), we have:
\[
\cos 10^\circ + \cos 80^\circ = 2 \times \frac{\sqrt{2}}{2} \cos 35^\circ = \sqrt{2} \cos 35^\circ.
\]
Step 2: Use sum-to-product identity for sines.
The sum-to-product identity for sines is:
\[
\sin A - \sin B = 2 \cos \left( \frac{A+B}{2} \right) \sin \left( \frac{A-B}{2} \right).
\]
Substituting \( A = 80^\circ \) and \( B = 10^\circ \), we get:
\[
\sin 80^\circ - \sin 10^\circ = 2 \cos \left( \frac{80^\circ + 10^\circ}{2} \right) \sin \left( \frac{80^\circ - 10^\circ}{2} \right)
= 2 \cos 45^\circ \sin 35^\circ.
\]
Since \( \cos 45^\circ = \frac{\sqrt{2}}{2} \), we have:
\[
\sin 80^\circ - \sin 10^\circ = \sqrt{2} \sin 35^\circ.
\]
Step 3: Simplifying the expression.
Now substitute the simplified expressions for the numerator and denominator into the original equation:
\[
\frac{\cos 10^\circ + \cos 80^\circ}{\sin 80^\circ - \sin 10^\circ} = \frac{\sqrt{2} \cos 35^\circ}{\sqrt{2} \sin 35^\circ} = \frac{\cos 35^\circ}{\sin 35^\circ} = \cot 35^\circ.
\]
Since \( \cot 35^\circ = \tan(90^\circ - 35^\circ) = \tan 55^\circ \), the value of the expression is:
\[
\tan 55^\circ.
\]
Thus, the correct answer is:
\[
\boxed{\tan 55^\circ}.
\]