We are asked to evaluate the expression:
\[ \frac{\cos 10^\circ + \cos 80^\circ}{\sin 80^\circ - \sin 10^\circ}. \]Step 1: Apply the sum-to-product identity for cosines.
Using the identity:
with \( A = 10^\circ \) and \( B = 80^\circ \), we get:
\[ \cos 10^\circ + \cos 80^\circ = 2 \cos 45^\circ \cos (-35^\circ). \]Since cosine is an even function, \( \cos (-35^\circ) = \cos 35^\circ \), so:
\[ \cos 10^\circ + \cos 80^\circ = 2 \times \frac{\sqrt{2}}{2} \times \cos 35^\circ = \sqrt{2} \cos 35^\circ. \]Step 2: Apply the sum-to-product identity for sines.
Using the identity:
with \( A = 80^\circ \) and \( B = 10^\circ \), we get:
\[ \sin 80^\circ - \sin 10^\circ = 2 \cos 45^\circ \sin 35^\circ. \]Since \( \cos 45^\circ = \frac{\sqrt{2}}{2} \), this simplifies to:
\[ \sin 80^\circ - \sin 10^\circ = \sqrt{2} \sin 35^\circ. \]Step 3: Simplify the overall expression.
Substitute the simplified numerator and denominator:
Recall that:
\[ \cot 35^\circ = \tan (90^\circ - 35^\circ) = \tan 55^\circ. \]Final answer:
\[ \boxed{\tan 55^\circ}. \]The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.