The given expression can be rewritten using trigonometric identities:
\[
\cos^3 A \cos A + \sin^3 A \sin A = \cos A \sin A \left( \cos^2 A - \sin^2 A \right) + \cos^4 A + \sin^4 A.
\]
Using the identity:
\[
\cos^4 A + \sin^4 A = \frac{1}{2} + \frac{1}{2} \cos 4A
\]
and substituting \( A = \frac{3\pi}{8} \), we calculate step-by-step:
1. Compute \( \cos 4A = \cos \frac{12\pi}{8} = \cos \frac{3\pi}{2} = 0 \).
2. Using \( \cos^4 A + \sin^4 A = \frac{1}{2} \).
3. Calculate \( \cos A \sin A = \frac{1}{2} \sin 2A \).
4. Compute \( \sin 2A = \sin \frac{6\pi}{8} = \sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2} \).
5. Multiply: \( \frac{1}{2} \times \frac{\sqrt{2}}{2} = \frac{1}{2\sqrt{2}} \).
Thus, the final answer is:
\[
\boxed{\frac{1}{2\sqrt{2}}}.
\]