We can use properties of determinants or expand along the first row:
\[
D =
\begin{vmatrix}
1 & 1 & 1 \\
a & b & c \\
a^3 & b^3 & c^3
\end{vmatrix}.
\]
Subtract the first column from the second and third columns:
\[
\Rightarrow
\begin{vmatrix}
1 & 0 & 0 \\
a & b - a & c - a \\
a^3 & b^3 - a^3 & c^3 - a^3
\end{vmatrix} =
\begin{vmatrix}
b - a & c - a \\
b^3 - a^3 & c^3 - a^3
\end{vmatrix}.
\]
Now,
\[
D = 1 \times
\begin{vmatrix}
b - a & c - a \\
b^3 - a^3 & c^3 - a^3
\end{vmatrix}.
\]
Recall the factorization:
\[
b^3 - a^3 = (b - a)(b^2 + ab + a^2),
\]
\[
c^3 - a^3 = (c - a)(c^2 + ac + a^2).
\]
Thus,
\[
D =
\begin{vmatrix}
b - a & c - a \\
(b - a)(b^2 + ab + a^2) & (c - a)(c^2 + ac + a^2)
\end{vmatrix}.
\]
Factor out \( (b - a) \) and \( (c - a) \) from rows:
\[
D = (b - a)(c - a)
\begin{vmatrix}
1 & 1 \\
b^2 + ab + a^2 & c^2 + ac + a^2
\end{vmatrix}.
\]
Calculate the \(2 \times 2\) determinant:
\[
= (b - a)(c - a) \left[ (c^2 + ac + a^2) - (b^2 + ab + a^2) \right]
\]
\[
= (b - a)(c - a) \left( c^2 + ac - b^2 - ab \right).
\]
Rewrite inside:
\[
c^2 - b^2 + a(c - b) = (c - b)(c + b) + a(c - b) = (c - b)(c + b + a).
\]
So,
\[
D = (b - a)(c - a)(c - b)(c + b + a).
\]
Note the order: To match the common Vandermonde pattern, reorder factors and account for sign changes:
\[
D = (b - a)(c - a)(c - b)(a + b + c).
\]
\ Final answer:
\[
\boxed{
\begin{vmatrix}
1 & 1 & 1 \\
a & b & c \\
a^3 & b^3 & c^3
\end{vmatrix}
= (b - a)(c - a)(c - b)(a + b + c).
}
\]