Question:

Evaluate the determinant: \[ \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix}. \]

Show Hint

Use column operations and factorization of differences of cubes to simplify determinants involving powers.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

We can use properties of determinants or expand along the first row: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix}. \] Subtract the first column from the second and third columns: \[ \Rightarrow \begin{vmatrix} 1 & 0 & 0 \\ a & b - a & c - a \\ a^3 & b^3 - a^3 & c^3 - a^3 \end{vmatrix} = \begin{vmatrix} b - a & c - a \\ b^3 - a^3 & c^3 - a^3 \end{vmatrix}. \] Now, \[ D = 1 \times \begin{vmatrix} b - a & c - a \\ b^3 - a^3 & c^3 - a^3 \end{vmatrix}. \] Recall the factorization: \[ b^3 - a^3 = (b - a)(b^2 + ab + a^2), \] \[ c^3 - a^3 = (c - a)(c^2 + ac + a^2). \] Thus, \[ D = \begin{vmatrix} b - a & c - a \\ (b - a)(b^2 + ab + a^2) & (c - a)(c^2 + ac + a^2) \end{vmatrix}. \] Factor out \( (b - a) \) and \( (c - a) \) from rows: \[ D = (b - a)(c - a) \begin{vmatrix} 1 & 1 \\ b^2 + ab + a^2 & c^2 + ac + a^2 \end{vmatrix}. \] Calculate the \(2 \times 2\) determinant: \[ = (b - a)(c - a) \left[ (c^2 + ac + a^2) - (b^2 + ab + a^2) \right] \] \[ = (b - a)(c - a) \left( c^2 + ac - b^2 - ab \right). \] Rewrite inside: \[ c^2 - b^2 + a(c - b) = (c - b)(c + b) + a(c - b) = (c - b)(c + b + a). \] So, \[ D = (b - a)(c - a)(c - b)(c + b + a). \] Note the order: To match the common Vandermonde pattern, reorder factors and account for sign changes: \[ D = (b - a)(c - a)(c - b)(a + b + c). \] \ Final answer: \[ \boxed{ \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (b - a)(c - a)(c - b)(a + b + c). } \]
Was this answer helpful?
0
0