We use the property of definite integrals:
\[
\int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx
\]
Let
\[
I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + (\cot x)^{101}}
\]
Apply the property:
\[
I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + (\cot (\frac{\pi}{2} - x))^{101}} = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + (\tan x)^{101}}
\]
Now add both expressions:
\[
2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{1}{1 + (\cot x)^{101}} + \frac{1}{1 + (\tan x)^{101}} \right) dx
\]
Use identity:
\[
\frac{1}{1 + a^n} + \frac{1}{1 + \frac{1}{a^n}} = 1 \quad \text{for } a > 0
\Rightarrow \frac{1}{1 + (\cot x)^{101}} + \frac{1}{1 + (\tan x)^{101}} = 1
\]
So:
\[
2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2} \Rightarrow I = \frac{\pi}{4}
\]