>
Exams
>
Physics
>
physical world
>
evaluate the definite integral int 0 frac pi 2 fra
Question:
Evaluate the definite integral:
\[ \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + (\cot x)^{101}} = ? \]
Show Hint
For definite integrals involving expressions like \( \cot x \) or \( \tan x \), use the property \( \int_0^a f(x)\,dx = \int_0^a f(a - x)\,dx \) to simplify the integration.
MHT CET - 2025
MHT CET
Updated On:
Apr 21, 2025
\( \frac{\pi}{4} \)
\( \frac{\pi}{2} \)
\( \frac{1}{2} \)
1
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
We use the property of definite integrals: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] Let \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + (\cot x)^{101}} \] Apply the property: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + (\cot (\frac{\pi}{2} - x))^{101}} = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + (\tan x)^{101}} \] Now add both expressions: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{1}{1 + (\cot x)^{101}} + \frac{1}{1 + (\tan x)^{101}} \right) dx \] Use identity: \[ \frac{1}{1 + a^n} + \frac{1}{1 + \frac{1}{a^n}} = 1 \quad \text{for } a > 0 \Rightarrow \frac{1}{1 + (\cot x)^{101}} + \frac{1}{1 + (\tan x)^{101}} = 1 \] So: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2} \Rightarrow I = \frac{\pi}{4} \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on physical world
If y = tan
-1
((2 + 3x) / (3 - 2x)) + tan
-1
(4x / (1 + 5x
2
)), then
dy/dx =
MHT CET - 2025
Physics
physical world
View Solution
The fundamental force in nature which operates among heavier elementary particles only is
TS EAMCET - 2025
Physics
physical world
View Solution
In the $\beta^{+}$ decay, the particle emitted along with neutron and positron is
TS EAMCET - 2025
Physics
physical world
View Solution
Evaluate the integral: ∫ log((2 + x)
2 + x
) dx
MHT CET - 2025
Physics
physical world
View Solution
The area enclosed between the parabola \( y^2 = 4x \) and the line \( y = 2x - 4 \) is:
MHT CET - 2025
Physics
physical world
View Solution
View More Questions
Questions Asked in MHT CET exam
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Trigonometric Identities
View Solution
Evaluate the integral: \[ \int \frac{1}{\sin^2 2x \cdot \cos^2 2x} \, dx \]
MHT CET - 2025
Trigonometric Identities
View Solution
Evaluate the integral:
\[ \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx \]
MHT CET - 2025
Integration
View Solution
Two point charges \( +2 \, \mu\text{C} \) and \( -3 \, \mu\text{C} \) are placed 10 cm apart in vacuum. What is the electrostatic force between them?
MHT CET - 2025
coulombs law
View Solution
Population of Town A and B was 20,000 in 1985. In 1989, the population of Town A was 25,000, and Town B had 28,000. What will be the difference in population between the two towns in 1993?
MHT CET - 2025
Population Growth Calculation
View Solution
View More Questions