Question:

Evaluate the definite integral: \[ \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + (\cot x)^{101}} = ? \]

Show Hint

For definite integrals involving expressions like \( \cot x \) or \( \tan x \), use the property \( \int_0^a f(x)\,dx = \int_0^a f(a - x)\,dx \) to simplify the integration.
Updated On: Apr 21, 2025
  • \( \frac{\pi}{4} \)
  • \( \frac{\pi}{2} \)
  • \( \frac{1}{2} \)
  • 1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation


We use the property of definite integrals: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] Let \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + (\cot x)^{101}} \] Apply the property: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + (\cot (\frac{\pi}{2} - x))^{101}} = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + (\tan x)^{101}} \] Now add both expressions: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{1}{1 + (\cot x)^{101}} + \frac{1}{1 + (\tan x)^{101}} \right) dx \] Use identity: \[ \frac{1}{1 + a^n} + \frac{1}{1 + \frac{1}{a^n}} = 1 \quad \text{for } a > 0 \Rightarrow \frac{1}{1 + (\cot x)^{101}} + \frac{1}{1 + (\tan x)^{101}} = 1 \] So: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2} \Rightarrow I = \frac{\pi}{4} \]
Was this answer helpful?
0
0