Question:

Evaluate: sinAcosB+cosAsinB\sin A \cos B + \cos A \sin B; if A=30A = 30^\circ and B=45B = 45^\circ.

Updated On: Dec 14, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

The expression sinAcosB+cosAsinB\sin A \cos B + \cos A \sin B is the standard trigonometric identity for sin(A+B)\sin(A + B).

sinAcosB+cosAsinB=sin(A+B) \sin A \cos B + \cos A \sin B = \sin(A + B)

Substituting A=30A = 30^\circ and B=45B = 45^\circ:

sin(30+45)=sin75 \sin(30^\circ + 45^\circ) = \sin 75^\circ

Now use the calculator or known values to find:

sin750.9659 \sin 75^\circ \approx 0.9659

Thus, the value is approximately 0.9659.

Was this answer helpful?
0
0

Top Questions on Trigonometry

View More Questions