The expression sinAcosB+cosAsinB\sin A \cos B + \cos A \sin BsinAcosB+cosAsinB is the standard trigonometric identity for sin(A+B)\sin(A + B)sin(A+B).
sinAcosB+cosAsinB=sin(A+B) \sin A \cos B + \cos A \sin B = \sin(A + B) sinAcosB+cosAsinB=sin(A+B)
Substituting A=30∘A = 30^\circA=30∘ and B=45∘B = 45^\circB=45∘:
sin(30∘+45∘)=sin75∘ \sin(30^\circ + 45^\circ) = \sin 75^\circ sin(30∘+45∘)=sin75∘
Now use the calculator or known values to find:
sin75∘≈0.9659 \sin 75^\circ \approx 0.9659 sin75∘≈0.9659
Thus, the value is approximately 0.9659.