Step 1: Use the identity for \( a^3 + b^3 - c^3 \), if applicable.
But instead, compute the values numerically or via trigonometric symmetry.
Use approximation or calculator: \[ \sin 10^\circ \approx 0.1736 \Rightarrow \sin^3 10^\circ \approx 0.1736^3 = 0.0052 \] \[ \sin 50^\circ \approx 0.7660 \Rightarrow \sin^3 50^\circ \approx 0.4493 \] \[ \sin 70^\circ \approx 0.9397 \Rightarrow \sin^3 70^\circ \approx 0.8306 \] \[ \sin^3 10^\circ + \sin^3 50^\circ - \sin^3 70^\circ \approx 0.0052 + 0.4493 - 0.8306 = -0.3761 \approx -\dfrac{3}{8} \]
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.