Step 1: Use the identity for \( a^3 + b^3 - c^3 \), if applicable.
But instead, compute the values numerically or via trigonometric symmetry.
Use approximation or calculator: \[ \sin 10^\circ \approx 0.1736 \Rightarrow \sin^3 10^\circ \approx 0.1736^3 = 0.0052 \] \[ \sin 50^\circ \approx 0.7660 \Rightarrow \sin^3 50^\circ \approx 0.4493 \] \[ \sin 70^\circ \approx 0.9397 \Rightarrow \sin^3 70^\circ \approx 0.8306 \] \[ \sin^3 10^\circ + \sin^3 50^\circ - \sin^3 70^\circ \approx 0.0052 + 0.4493 - 0.8306 = -0.3761 \approx -\dfrac{3}{8} \]
Given that $\sin \theta + \cos \theta = x$, prove that $\sin^4 \theta + \cos^4 \theta = \dfrac{2 - (x^2 - 1)^2}{2}$.
Match the pollination types in List-I with their correct mechanisms in List-II:
List-I (Pollination Type) | List-II (Mechanism) |
---|---|
A) Xenogamy | I) Genetically different type of pollen grains |
B) Ophiophily | II) Pollination by snakes |
C) Chasmogamous | III) Exposed anthers and stigmas |
D) Cleistogamous | IV) Flowers do not open |