>
Exams
>
Mathematics
>
Trigonometry
>
evaluate sec 2 theta tan 2 theta
Question:
Evaluate
\[ \sec 2\theta - \tan 2\theta = \]
Show Hint
Remember that \(\sec x - \tan x\) can be simplified using half–angle identities.
MHT CET - 2020
MHT CET
Updated On:
Feb 2, 2026
\(\tan\!\left(\dfrac{\pi}{4}-\theta\right)\)
\(\tan 2\theta\)
\(\cot 2\theta\)
\(\cot\!\left(\dfrac{\pi}{4}-\theta\right)\)
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Step 1: Use standard trigonometric identity.
We know that \[ \sec x - \tan x = \tan\!\left(\frac{\pi}{4} - \frac{x}{2}\right) \]
Step 2: Substitute \(x = 2\theta\).
\[ \sec 2\theta - \tan 2\theta = \tan\!\left(\frac{\pi}{4} - \theta\right) \]
Step 3: Final result.
Thus, \[ \sec 2\theta - \tan 2\theta = \tan\!\left(\frac{\pi}{4}-\theta\right) \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Trigonometry
Let \(m\) and \(n\) be non–negative integers such that for \[ x\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right),\qquad \tan x+\sin x=m,\quad \tan x-\sin x=n. \] Then the possible ordered pair \((m,n)\) is:
JEE Main - 2026
Mathematics
Trigonometry
View Solution
Let \(\tan \left( \frac{\pi}{4} + \frac{1}{2} \cos^{-1} \frac{2}{3} \right) + \tan \left( \frac{\pi}{4} - \frac{1}{2} \sin^{-1} \frac{2}{3} \right) = k\). Then number of solution of the equation \(\sin^{-1}(kx - 1) = \sin x - \cos^{-1} x\) is/are :
JEE Main - 2026
Mathematics
Trigonometry
View Solution
In \(\Delta ABC\) if \(\frac{\tan(A-B)}{\tan A} + \frac{\sin^2 C}{\sin^2 A} = 1\) where \(A, B, C \in (0, \frac{\pi}{2})\) then
JEE Main - 2026
Mathematics
Trigonometry
View Solution
Evaluate the limit:
\[ \lim_{x \to 0} \frac{\sin(2x) - 2\sin x}{x^3} \]
JEE Main - 2026
Mathematics
Trigonometry
View Solution
The value of \( \csc 10^\circ - \sqrt{3}\sec 10^\circ \) is:
JEE Main - 2026
Mathematics
Trigonometry
View Solution
View More Questions
Questions Asked in MHT CET exam
If $ f(x) = 2x^2 - 3x + 5 $, find $ f(3) $.
MHT CET - 2025
Functions
View Solution
Evaluate the definite integral: \( \int_{-2}^{2} |x^2 - x - 2| \, dx \)
MHT CET - 2025
Definite Integral
View Solution
There are 6 boys and 4 girls. Arrange their seating arrangement on a round table such that 2 boys and 1 girl can't sit together.
MHT CET - 2025
permutations and combinations
View Solution
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Trigonometric Identities
View Solution
Evaluate the integral: \[ \int \frac{1}{\sin^2 2x \cdot \cos^2 2x} \, dx \]
MHT CET - 2025
Trigonometric Identities
View Solution
View More Questions