>
Exams
>
Mathematics
>
Limits
>
evaluate lim x to infty left sqrt 3 x 3 4x 2 sqrt
Question:
Evaluate: $$ \lim_{x \to \infty} \left( \sqrt[3]{x^3 + 4x^2} - \sqrt{x^2 - 3x} \right) $$
Show Hint
Use binomial expansion for large \( x \) to simplify expressions.
AP EAPCET - 2025
AP EAPCET
Updated On:
Jun 4, 2025
\(\frac{17}{6}\)
\(\frac{25}{6}\)
\(-\frac{1}{6}\)
\(\frac{37}{6}\)
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Rewrite terms: \[ \sqrt[3]{x^3 + 4x^2} = \sqrt[3]{x^3\left(1 + \frac{4}{x}\right)} = x \sqrt[3]{1 + \frac{4}{x}} \] \[ \sqrt{x^2 - 3x} = x \sqrt{1 - \frac{3}{x}} \] Use binomial expansion: \[ \sqrt[3]{1 + \frac{4}{x}} \approx 1 + \frac{4}{3x} - \dots \] \[ \sqrt{1 - \frac{3}{x}} \approx 1 - \frac{3}{2x} - \dots \] Therefore: \[ \sqrt[3]{x^3 + 4x^2} - \sqrt{x^2 - 3x} \approx x \left(1 + \frac{4}{3x}\right) - x \left(1 - \frac{3}{2x}\right) = \frac{4}{3} + \frac{3}{2} = \frac{8}{6} + \frac{9}{6} = \frac{17}{6} \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Limits
If \( f(3) = 18, f'(3) = 0 \) and \( f''(3) = 4 \), then the value of
\[ \lim_{x \to 3} \ln \left( \frac{f(x+2)}{f(3)} \right)^{\frac{18}{(x-3)^3}} \]
is equal to
JEE Main - 2026
Mathematics
Limits
View Solution
The limit of \( \lim_{x \to 0} \frac{\sin x}{x} \) is:
MHT CET - 2025
Mathematics
Limits
View Solution
Match List-I with List-II:
\[\begin{array}{|c|c|} \hline \textbf{List-I} & \textbf{List-II} \\ \hline \text{(A)}\ \lim_{x\to 0}(1+2x)^{\frac{1}{x}} & \text{(I)}\ e^{6} \\ \hline \text{(B)}\ \lim_{x\to \infty}\left(1+\frac{1}{x}\right)^{x} & \text{(II)}\ e^{2} \\ \hline \text{(C)}\ \lim_{x\to 0}(1+5x)^{\frac{2}{x}} & \text{(III)}\ e \\ \hline \text{(D)}\ \lim_{x\to \infty}\left(1+\frac{3}{x}\right)^{2x} & \text{(IV)}\ e^{5} \\ \hline \end{array}\] Choose the correct answer from the options given below:
CUET (PG) - 2025
Computer Science
Limits
View Solution
The value of
$\displaystyle \lim_{x \to \infty}\left(1+\frac{2}{3x}\right)^{x}$
is:
CUET (PG) - 2025
Computer Science
Limits
View Solution
If $ \lim_{x \to 0} \frac{\cos(2x) + a \cos(4x) - b}{x^4} $ is finite, then $ (a + b) $ is equal to:
JEE Main - 2025
Mathematics
Limits
View Solution
View More Questions
Questions Asked in AP EAPCET exam
In a series LCR circuit, the voltages across the capacitor, resistor, and inductor are in the ratio 2:3:6. If the voltage of the source in the circuit is 240 V, then the voltage across the inductor is
AP EAPCET - 2025
Electromagnetic induction
View Solution
0.25 moles of $ \text{CH}_2\text{FCOOH} $ was dissolved in $ 0.5 \, \text{kg} $ of water. The depression in freezing point of the resultant solution was observed as $ 1^\circ \text{C} $. What is the van't Hoff factor? ($ K_f = 1.86 \, \text{K kg mol}^{-1} $)
AP EAPCET - 2025
Colligative Properties
View Solution
At $T(K)$, the vapor pressure of water is $x$ kPa. What is the vapor pressure (in kPa) of 1 molal solution containing non-volatile solute?
AP EAPCET - 2025
Colligative Properties
View Solution
At 300 K, vapour pressure of pure liquid A is 70 mm Hg. It forms an ideal solution with liquid B. Mole fraction of B = 0.2 and total vapour pressure of solution = 84 mm Hg. What is vapour pressure (in mm) of pure B?
AP EAPCET - 2025
Colligative Properties
View Solution
A 1% (w/v) aqueous solution of a certain solute is isotonic with a 3% (w/v) solution of glucose (molar mass 180 g mol$^{-1}$). The molar mass of solute (in g mol$^{-1}$) is
AP EAPCET - 2025
Colligative Properties
View Solution
View More Questions