Evaluate the limit:
\[
\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3}
\]
Substituting \( x = 3 \) gives \( \frac{0}{0} \), so factorize the numerator:
\[
x^2 - x - 6 = (x - 3)(x + 2)
\]
\[
\frac{x^2 - x - 6}{x - 3} = \frac{(x - 3)(x + 2)}{x - 3} = x + 2 \quad (x \neq 3)
\]
Now take the limit:
\[
\lim_{x \to 3} (x + 2) = 3 + 2 = 5
\]
Thus, the value of the limit is:
\[
\boxed{5}
\]