Step 1: Simplify the expression.
We have
\[
L = \lim_{n \to \infty} \frac{(\sqrt{n^2 + 1} + n)^2}{(\sqrt[3]{n^6 + 1})^2}.
\]
Simplify numerator and denominator using leading terms.
Step 2: Factor out highest powers of $n$.
\[
\sqrt{n^2 + 1} = n\sqrt{1 + \frac{1}{n^2}} \approx n\left(1 + \frac{1}{2n^2}\right).
\]
So,
\[
\sqrt{n^2 + 1} + n \approx n\left(1 + \frac{1}{2n^2}\right) + n = 2n + \frac{1}{2n}.
\]
Step 3: Simplify denominator.
\[
\sqrt[3]{n^6 + 1} = n^2\sqrt[3]{1 + \frac{1}{n^6}} \approx n^2\left(1 + \frac{1}{3n^6}\right).
\]
Step 4: Substitute and simplify.
\[
L = \lim_{n \to \infty} \frac{(2n + \frac{1}{2n})^2}{n^4(1 + \frac{1}{3n^6})^2}
= \lim_{n \to \infty} \frac{4n^2 + 2 + \frac{1}{4n^2}}{n^4(1 + \frac{2}{3n^6})}.
\]
Dominant term in numerator: $4n^2$, denominator: $n^4$. Hence,
\[
L = \lim_{n \to \infty} \frac{4n^2}{n^4} = 0.
\]
Wait, let's recheck: The exponent structure needs careful handling — note that $\sqrt[3]{n^6 + 1} = n^2$, not $n^4$.
Step 5: Correct simplification.
\[
L = \lim_{n \to \infty} \left(\frac{\sqrt{n^2 + 1} + n}{n^2}\right)^2 = \lim_{n \to \infty} \left(\frac{2n + \frac{1}{2n}}{n^2}\right)^2 = \lim_{n \to \infty} \left(\frac{2}{n} + \frac{1}{2n^3}\right)^2 = 0.
\]
Correction: We missed the cube root power. Actual denominator is $\sqrt[3]{n^6 + 1} = n^2(1 + \frac{1}{n^6})^{1/3} \approx n^2$.
So,
\[
L = \left(\frac{2n}{n^2}\right)^2 = \frac{4}{n^2} \to 0.
\]
Hence,
\[
\boxed{0.}
\]