Step 1: Simplify the terms.
We start by simplifying the individual terms. For \( \sin \left( \tan^{-1} \frac{3}{4} \right) \), using the identity \( \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} \), we find that \( \sin \left( \tan^{-1} \frac{3}{4} \right) = \frac{3}{5} \). Similarly, for \( \sin \left( \tan^{-1} \frac{4}{3} \right) \), we find that \( \sin \left( \tan^{-1} \frac{4}{3} \right) = \frac{4}{5} \).
Step 2: Apply the Pythagorean identity.
Now, squaring both terms:
\[
\left( \frac{3}{5} \right)^2 + \left( \frac{4}{5} \right)^2 = \frac{9}{25} + \frac{16}{25} = 1.
\]
Step 3: Conclusion.
Thus, the correct answer is 1, corresponding to option (B).