We are given the expression \( \left[ 1 + \sec 2\theta \right] \left[ 1 + \sec 40^\circ \right] \).
Step 1: Use the identity \( \sec x = \frac{1}{\cos x} \) to rewrite the terms:
\[
1 + \sec 2\theta = 1 + \frac{1}{\cos 2\theta}, \quad 1 + \sec 40^\circ = 1 + \frac{1}{\cos 40^\circ}
\]
Step 2: Multiply the two expressions and simplify:
\[
\left(1 + \frac{1}{\cos 2\theta} \right) \left(1 + \frac{1}{\cos 40^\circ} \right)
\]
After simplifying, we get the final result as \( \cot \theta \tan 40^\circ \).
Thus, the correct answer is \( \cot \theta \tan 40^\circ \).