Step 1: Simplify quadratic.
\[
x^2 - 8x + 7 = (x^2 - 8x + 16) - 9 = (x-4)^2 - 3^2.
\]
So integral becomes:
\[
I = \int \sqrt{(x-4)^2 - 3^2}\, dx.
\]
Step 2: Use standard formula.
Recall:
\[
\int \sqrt{u^2 - a^2}\, du = \frac{u}{2}\sqrt{u^2 - a^2} - \frac{a^2}{2}\ln \left| u + \sqrt{u^2 - a^2}\right| + C.
\]
Here $u = (x-4)$ and $a=3$, so $du=dx$.
Step 3: Apply formula.
\[
I = \frac{(x-4)}{2}\sqrt{(x-4)^2 - 9} - \frac{9}{2}\ln \left| (x-4) + \sqrt{(x-4)^2 - 9}\right| + C.
\]
Final Answer: \[ \boxed{ \frac{(x-4)}{2}\sqrt{(x-4)^2 - 9} - \frac{9}{2}\ln \left| (x-4) + \sqrt{(x-4)^2 - 9}\right| + C } \]