Step 1: Substituting \( t = e^x \).
Let \( t = e^x \), then \( dt = e^x dx = t dx \).
Thus, changing the limits:
\[
x = \log 4 \Rightarrow t = 4, \quad x = \log 5 \Rightarrow t = 5.
\]
Rewriting the integral in terms of \( t \):
\[
I = \int_{4}^{5} \frac{t^2 + t}{t^2 - 5t + 6} dt.
\]
Step 2: Partial Fraction Decomposition.
Factoring the denominator:
\[
t^2 - 5t + 6 = (t-2)(t-3).
\]
Using partial fractions and solving the integral step-by-step gives:
\[
I = \log \left( \frac{128}{27} \right).
\]