The given integral is:
\[
\int \left( \sqrt{\cot x} + \sqrt{\tan x} \right) dx
\]
We can split the integral into two parts:
\[
\int \sqrt{\cot x} \, dx + \int \sqrt{\tan x} \, dx
\]
Let's solve each part separately:
First Integral:
\[
I_1 = \int \sqrt{\cot x} \, dx
\]
Using the identity \( \cot x = \frac{\cos x}{\sin x} \), we rewrite the integral:
\[
I_1 = \int \sqrt{\frac{\cos x}{\sin x}} \, dx = \int \frac{\sqrt{\cos x}}{\sqrt{\sin x}} \, dx
\]
Now, let's use substitution. Let \( u = \sin x \), so \( du = \cos x \, dx \). The integral becomes:
\[
I_1 = \int \frac{1}{\sqrt{u}} \, du = 2\sqrt{u} + C_1 = 2\sqrt{\sin x} + C_1
\]
Second Integral:
\[
I_2 = \int \sqrt{\tan x} \, dx
\]
Using the identity \( \tan x = \frac{\sin x}{\cos x} \), we rewrite the integral:
\[
I_2 = \int \sqrt{\frac{\sin x}{\cos x}} \, dx = \int \frac{\sqrt{\sin x}}{\sqrt{\cos x}} \, dx
\]
Now, let's use substitution. Let \( v = \cos x \), so \( dv = -\sin x \, dx \). The integral becomes:
\[
I_2 = -\int \frac{1}{\sqrt{v}} \, dv = -2\sqrt{v} + C_2 = -2\sqrt{\cos x} + C_2
\]
Final Answer:
The final solution is:
\[
\int \left( \sqrt{\cot x} + \sqrt{\tan x} \right) dx = 2\sqrt{\sin x} - 2\sqrt{\cos x} + C
\]
Where \( C = C_1 + C_2 \) is the constant of integration.