Step 1: Use substitution.
Let \( u = \log x \), so that \( du = \frac{1}{x} dx \). The integral becomes:
\[
\int \frac{u - 1}{1 + u^2} \, du.
\]
Step 2: Break the integral.
We can separate the terms in the numerator:
\[
\int \frac{u}{1 + u^2} \, du - \int \frac{1}{1 + u^2} \, du.
\]
Step 3: Perform the integration.
The first integral is \( \frac{1}{2} \log(1 + u^2) \), and the second integral is \( \tan^{-1} u \). Substituting \( u = \log x \), we get the final answer:
\[
\frac{x}{1 + (\log x)^2} + c.
\]
Step 4: Conclusion.
Thus, the correct answer is \( \frac{x}{1 + (\log x)^2} + c \), corresponding to option (B).