Question:

Evaluate: \( \int \frac{1 + \tan x \tan(x + \alpha)}{\tan x \tan(x + \alpha)} dx \):

Show Hint

Use trigonometric identities and log properties to evaluate integrals involving tan functions.
Updated On: May 19, 2025
  • \( \tan \alpha (\log(\sec(x + \alpha)) + \log \sec x + C) \)
  • \( \cot \alpha (\log |\sin x| - \log |\sin(x + \alpha)|) + C \)
  • \( \tan \alpha \left( \log \frac{\cos x}{\sin(x + \alpha)} \right) + C \)
  • \( \cot \alpha \left( \log \frac{\sin(x + \alpha)}{\cos(x + \alpha)} \right) + C \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Break the integrand into partial fractions and simplify. Use identities to convert to log form. Resultant expression simplifies to: \[ \cot \alpha (\log |\sin x| - \log |\sin(x + \alpha)|) + C \]
Was this answer helpful?
0
0