Step 1: Standard formula. We know, \[ \int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln \left| x + \sqrt{x^2 - a^2} \right| + C, (|x| > a) \]
Step 2: Apply directly. \[ \int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln \left| x + \sqrt{x^2 - a^2} \right| + C \]
Final Answer: \[ \boxed{\ln \left| x + \sqrt{x^2 - a^2} \right| + C} \]
Find the value of \[ \int \frac{\sec^2 2x}{(\cot x - \tan x)^2} \, dx. \]