To evaluate the integral \( \int_{-2}^{2} x^4 (4 - x^2)^{\frac{7}{2}} \, dx \), we can proceed with the following steps:
1. Substitution:
- Let \( x = 2\sin\theta \). Then, \( dx = 2\cos\theta \, d\theta \).
- When \( x = -2 \), \( \theta = -\frac{\pi}{2} \).
- When \( x = 2 \), \( \theta = \frac{\pi}{2} \).
- The integral becomes:
\[
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (2\sin\theta)^4 (4 - (2\sin\theta)^2)^{\frac{7}{2}} \cdot 2\cos\theta \, d\theta
\]
2. Simplify the Integrand:
- Simplify \( (4 - (2\sin\theta)^2)^{\frac{7}{2}} \):
\[
4 - (2\sin\theta)^2 = 4 - 4\sin^2\theta = 4(1 - \sin^2\theta) = 4\cos^2\theta
\]
\[
(4\cos^2\theta)^{\frac{7}{2}} = 4^{\frac{7}{2}} \cos^7\theta = 128\cos^7\theta
\]
- Thus, the integrand becomes:
\[
(2\sin\theta)^4 \cdot 128\cos^7\theta \cdot 2\cos\theta = 2^4 \sin^4\theta \cdot 128 \cos^8\theta \cdot 2 = 2^5 \cdot 128 \sin^4\theta \cos^8\theta
\]
\[
= 4096 \sin^4\theta \cos^8\theta
\]
3. Integrate:
- The integral is now:
\[
4096 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^4\theta \cos^8\theta \, d\theta
\]
- Since the integrand is even, we can write:
\[
8192 \int_{0}^{\frac{\pi}{2}} \sin^4\theta \cos^8\theta \, d\theta
\]
- Use the beta function identity:
\[
\int_{0}^{\frac{\pi}{2}} \sin^m\theta \cos^n\theta \, d\theta = \frac{1}{2} B\left(\frac{m+1}{2}, \frac{n+1}{2}\right)
\]
where \( B \) is the beta function.
- For \( m = 4 \) and \( n = 8 \):
\[
\int_{0}^{\frac{\pi}{2}} \sin^4\theta \cos^8\theta \, d\theta = \frac{1}{2} B\left(\frac{5}{2}, \frac{9}{2}\right)
\]
- The beta function \( B(x, y) \) is related to the gamma function:
\[
B(x, y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x + y)}
\]
- Calculate the gamma functions:
\[
\Gamma\left(\frac{5}{2}\right) = \frac{3}{2} \cdot \frac{1}{2} \cdot \sqrt{\pi} = \frac{3\sqrt{\pi}}{4}
\]
\[
\Gamma\left(\frac{9}{2}\right) = \frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \sqrt{\pi} = \frac{105\sqrt{\pi}}{16}
\]
\[
\Gamma\left(\frac{5}{2} + \frac{9}{2}\right) = \Gamma(7) = 6! = 720
\]
- Thus:
\[
B\left(\frac{5}{2}, \frac{9}{2}\right) = \frac{\frac{3\sqrt{\pi}}{4} \cdot \frac{105\sqrt{\pi}}{16}}{720} = \frac{315\pi}{46080} = \frac{7\pi}{1024}
\]
- Therefore:
\[
\int_{0}^{\frac{\pi}{2}} \sin^4\theta \cos^8\theta \, d\theta = \frac{1}{2} \cdot \frac{7\pi}{1024} = \frac{7\pi}{2048}
\]
- Multiply by 8192:
\[
8192 \cdot \frac{7\pi}{2048} = 28\pi
\]
4. Final Answer:
- The integral evaluates to:
\[
\boxed{28\pi}
\]
This corresponds to option (3).