Question:

Evaluate: \[ \int_{-2}^{2} \sqrt{\frac{2 - x}{2 + x}} \, dx. \]

Show Hint

Trigonometric substitutions can simplify integrals with square roots of rational functions. Identifying symmetries and using standard trigonometric identities can further reduce the complexity of the integral.
Updated On: Jan 28, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Analyze the symmetry of the integrand.
The function to integrate is: \[ f(x) = \sqrt{\frac{2 - x}{2 + x}}. \] To check for symmetry, replace \( x \) with \( -x \): \[ f(-x) = \sqrt{\frac{2 - (-x)}{2 + (-x)}} = \sqrt{\frac{2 + x}{2 - x}}. \] We observe that: \[ f(-x) = \frac{1}{f(x)}. \] Since \( f(-x) \neq f(x) \), the function is not symmetric, and we need to proceed with a direct approach to evaluate the integral. Step 2: Substitute to simplify the integrand.
We begin by making a substitution to simplify the expression: \[ x = 2 \sin \theta, \quad dx = 2 \cos \theta \, d\theta. \] The limits change accordingly: - When \( x = -2 \), \( \theta = -\frac{\pi}{2} \). - When \( x = 2 \), \( \theta = \frac{\pi}{2} \). Substituting into the integrand: \[ \sqrt{\frac{2 - x}{2 + x}} = \sqrt{\frac{2 - 2 \sin \theta}{2 + 2 \sin \theta}} = \sqrt{\frac{1 - \sin \theta}{1 + \sin \theta}}. \] Thus, the integral becomes: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\frac{1 - \sin \theta}{1 + \sin \theta}} \cdot 2 \cos \theta \, d\theta. \] Step 3: Simplify using trigonometric identities.
We use the identity: \[ \frac{1 - \sin \theta}{1 + \sin \theta} = \tan^2\left(\frac{\pi}{4} - \frac{\theta}{2}\right). \] Substituting this into the integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right) \cdot \cos \theta \, d\theta. \] Using symmetry properties and trigonometric transformations, the integral simplifies further (details omitted for brevity). Step 4: Evaluate the integral.
The value of the integral is: \[ I = 2\pi. \] Conclusion:
The final value of the integral is: \[ \boxed{2\pi}. \]
Was this answer helpful?
0
0