Step 1: Analyze the denominator and absolute value.
The denominator \( x^2 + 4|x| + 4 \) depends on the value of \( x \):
- For \( x \geq 0 \), \( |x| = x \), so
\[
x^2 + 4|x| + 4 = x^2 + 4x + 4 = (x + 2)^2.
\]
- For \( x <0 \), \( |x| = -x \), so
\[
x^2 + 4|x| + 4 = x^2 - 4x + 4 = (x - 2)^2.
\]
Step 2: Split the integral into two regions.
\[
\int_{-2}^{2} \frac{x^3 + |x| + 1}{x^2 + 4|x| + 4} \, dx = \int_{-2}^{0} \frac{x^3 - x + 1}{(x - 2)^2} \, dx + \int_{0}^{2} \frac{x^3 + x + 1}{(x + 2)^2} \, dx.
\]
Step 3: Analyze the symmetry of the function.
Consider the numerator \( x^3 + |x| + 1 \):
- The function \( x^3 \) is odd.
- The term \( |x| \) is even.
- The constant term 1 is even.
Evaluate the integral properties using the symmetry of the function. Since the function inside the integral has a symmetric structure, the integral simplifies to:
\[
\int_{-2}^{2} \frac{x^3 + |x| + 1}{x^2 + 4|x| + 4} \, dx = 0.
\]
Final Answer:
\[
\int_{-2}^{2} \frac{x^3 + |x| + 1}{x^2 + 4|x| + 4} \, dx = 0.
\]