Step 1: Split the integral at critical points \( x = 1, 2, 3 \).
\[
\int_1^3 (|x - 1| + |x - 2| + |x - 3|) \, dx = \int_1^2 (4 - x) \, dx + \int_2^3 x \, dx
\]
Step 2: Evaluate each integral separately.
\[
\int_1^2 (4 - x) \, dx = \left[ 4x - \frac{x^2}{2} \right]_1^2
\]
\[
= \left( 8 - 2 \right) - \left( 4 - \frac{1}{2} \right) = 6 - 3.5 = 2.5
\]
\[
\int_2^3 x \, dx = \left[ \frac{x^2}{2} \right]_2^3 = \frac{9}{2} - \frac{4}{2} = \frac{5}{2}
\]
Step 3: Add the results.
\[
\int_1^3 (|x - 1| + |x - 2| + |x - 3|) \, dx = 2.5 + 2.5 = 5
\]
Final Answer:
\[
\boxed{5}
\]