The given integral is:
\[
\int_1^3 [x - 1] \, dx
\]
We need to integrate the function \( f(x) = x - 1 \) over the interval \( [1, 3] \). First, compute the antiderivative of \( f(x) = x - 1 \):
\[
\int (x - 1) \, dx = \frac{x^2}{2} - x
\]
Now, evaluate this antiderivative from 1 to 3:
\[
\left[ \frac{x^2}{2} - x \right]_1^3 = \left( \frac{3^2}{2} - 3 \right) - \left( \frac{1^2}{2} - 1 \right)
\]
\[
= \left( \frac{9}{2} - 3 \right) - \left( \frac{1}{2} - 1 \right)
\]
\[
= \left( \frac{9}{2} - \frac{6}{2} \right) - \left( \frac{1}{2} - \frac{2}{2} \right)
\]
\[
= \frac{3}{2} + \frac{1}{2} = 6
\]
Thus, the value of the integral is 6.