The integrand involves absolute values. To solve, we analyze the behavior of \(|x - 1|\), \(|x - 2|\), and \(|x - 3|\) over the given interval \([1, 3]\).
Step 1: Break the interval \([1, 3]\) at the critical points \(x = 1\), \(x = 2\), and \(x = 3\). The intervals are: \[ [1, 2], \quad [2, 3]. \]
Step 2: Evaluate the expressions for each interval. - For \(x \in [1, 2]\): \[ |x - 1| = x - 1, \quad |x - 2| = 2 - x, \quad |x - 3| = 3 - x. \]
Thus, the integrand becomes: \[ |x - 1| + |x - 2| + |x - 3| = (x - 1) + (2 - x) + (3 - x) = 4 - x. \] - For \(x \in [2, 3]\): \[ |x - 1| = x - 1, \quad |x - 2| = x - 2, \quad |x - 3| = 3 - x. \] Thus, the integrand becomes: \[ |x - 1| + |x - 2| + |x - 3| = (x - 1) + (x - 2) + (3 - x) = x. \]
Step 3: Compute the integral over each sub-interval. 1. For \(x \in [1, 2]\): \[ \int_{1}^{2} (4 - x) \, dx = \left[4x - \frac{x^2}{2}\right]_{1}^{2}. \]
Evaluate: \[ \left[4(2) - \frac{(2)^2}{2}\right] - \left[4(1) - \frac{(1)^2}{2}\right] = \left(8 - 2\right) - \left(4 - 0.5\right) = 6 - 3.5 = 2.5. \] 2. For \(x \in [2, 3]\): \[ \int_{2}^{3} x \, dx = \left[\frac{x^2}{2}\right]_{2}^{3}. \]
Evaluate: \[ \left[\frac{(3)^2}{2}\right] - \left[\frac{(2)^2}{2}\right] = \frac{9}{2} - \frac{4}{2} = \frac{5}{2}. \] Step 4: Add the results. \[ \int_{1}^{3} \left(|x - 1| + |x - 2| + |x - 3|\right) \, dx = 2.5 + 2.5 = 5. \]
Final Answer: \[ \int_{1}^{3} \left(|x - 1| + |x - 2| + |x - 3|\right) \, dx = 5. \]
A school is organizing a debate competition with participants as speakers and judges. $ S = \{S_1, S_2, S_3, S_4\} $ where $ S = \{S_1, S_2, S_3, S_4\} $ represents the set of speakers. The judges are represented by the set: $ J = \{J_1, J_2, J_3\} $ where $ J = \{J_1, J_2, J_3\} $ represents the set of judges. Each speaker can be assigned only one judge. Let $ R $ be a relation from set $ S $ to $ J $ defined as: $ R = \{(x, y) : \text{speaker } x \text{ is judged by judge } y, x \in S, y \in J\} $.
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: