We need to evaluate the integral \( I_p = \int_{0}^{\pi} \frac{\sin 2px}{\sin x} dx \), where \( p \in N \).
We can use the identity \( \sin(A+B) - \sin(A-B) = 2 \cos A \sin B \).
Let \( A = (2p-1)x \) and \( B = x \), then \( A+B = 2px \) and \( A-B = (2p-2)x \).
So, \( \sin 2px - \sin (2p-2)x = 2 \cos (2p-1)x \sin x \).
Therefore, \( \frac{\sin 2px}{\sin x} = \frac{\sin (2p-2)x}{\sin x} + 2 \cos (2p-1)x \).
Integrating from \( 0 \) to \( \pi \):
$$I_p = \int_{0}^{\pi} \frac{\sin (2p-2)x}{\sin x} dx + \int_{0}^{\pi} 2 \cos (2p-1)x dx$$
$$I_p = I_{p-1} + \left[ \frac{2 \sin (2p-1)x}{2p-1} \right]_{0}^{\pi}$$
$$I_p = I_{p-1} + \frac{2 \sin (2p-1)\pi}{2p-1} - \frac{2 \sin 0}{2p-1}$$
Since \( p \in N \), \( 2p-1 \) is an integer, so \( \sin (2p-1)\pi = 0 \). Also, \( \sin 0 = 0 \).
Thus, \( I_p = I_{p-1} \).
This shows that the value of the integral is independent of \( p \).
Let's evaluate for \( p = 1 \):
$$I_1 = \int_{0}^{\pi} \frac{\sin 2x}{\sin x} dx = \int_{0}^{\pi} \frac{2 \sin x \cos x}{\sin x} dx = \int_{0}^{\pi} 2 \cos x dx$$
$$= [2 \sin x]_{0}^{\pi} = 2 \sin \pi - 2 \sin 0 = 2(0) - 2(0) = 0$$
Since \( I_p = I_{p-1} \) and \( I_1 = 0 \), it follows that \( I_p = 0 \) for all \( p \in N \).