Step 1: Simplify the integrand
The given integral is: \[ I = \int_{0}^{\pi/4} \frac{1}{\sin x + \cos x} \, dx. \] Use the identity \( \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \). Substituting: \[ I = \int_{0}^{\pi/4} \frac{1}{\sqrt{2} \sin\left(x + \frac{\pi}{4}\right)} \, dx = \frac{1}{\sqrt{2}} \int_{0}^{\pi/4} \csc\left(x + \frac{\pi}{4}\right) \, dx. \] Step 2: Integrate \( \csc(x + \pi/4) \)
The integral of \( \csc(x) \) is: \[ \int \csc x \, dx = \log|\csc x - \cot x| + C. \] Substituting this, we have: \[ I = \frac{1}{\sqrt{2}} \left[\log\left|\csc\left(x + \frac{\pi}{4}\right) - \cot\left(x + \frac{\pi}{4}\right)\right|\right]_{0}^{\pi/4}. \] Step 3: Evaluate the limits
At \( x = \pi/4 \): \[ \csc\left(\frac{\pi}{4} + \frac{\pi}{4}\right) = \csc\left(\frac{\pi}{2}\right) = 1, \quad \cot\left(\frac{\pi}{4} + \frac{\pi}{4}\right) = \cot\left(\frac{\pi}{2}\right) = 0. \] At \( x = 0 \): \[ \csc\left(0 + \frac{\pi}{4}\right) = \csc\left(\frac{\pi}{4}\right) = \sqrt{2}, \quad \cot\left(0 + \frac{\pi}{4}\right) = \cot\left(\frac{\pi}{4}\right) = 1. \] Substitute these values: \[ I = \frac{1}{\sqrt{2}} \left[\log\left(1 - 0\right) - \log\left(\sqrt{2} - 1\right)\right] = \frac{1}{\sqrt{2}} \left[\log(1) - \log(\sqrt{2} - 1)\right]. \] Step 4: Simplify the result
\[ I = \frac{1}{\sqrt{2}} \log(\sqrt{2} + 1) - \frac{1}{\sqrt{2}} \log(\sqrt{2} - 1). \]

Comparative Financial Data as on 31st March, 2024 and 2023
| Particulars | 31.03.2024 (₹) | 31.03.2023 (₹) |
|---|---|---|
| Surplus (P&L) | 17,00,000 | 8,00,000 |
| Patents | -- | 50,000 |
| Sundry Debtors | 5,80,000 | 4,20,000 |
| Sundry Creditors | 1,40,000 | 60,000 |
| Cash and Cash Equivalents | 2,00,000 | 90,000 |