Let \( t = \tan \theta \Rightarrow dt = \sec^2 \theta d\theta \), and \( \sin^2 \theta = \frac{t^2}{1 + t^2} \), so
\[
\int e^{t^2} \cdot \frac{t^3}{(1 + t^2)^2} dt
\]
After substitution and limits change from \( t = 0 \) to \( t = 1 \), solve to get the answer.