Use identity: \( 1 - \cos 4x = 2 \sin^2 2x \).
\[
\int_0^{\pi/2} (1 - \cos 4x) \, dx = \int_0^{\pi/2} 2 \sin^2 2x \, dx = 2 \int_0^{\pi/2} \sin^2 2x \, dx.
\]
Use \( \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \):
\[
\sin^2 2x = \frac{1 - \cos 4x}{2}, \quad \text{but directly integrate } \sin^2 2x.
\]
\[
\int \sin^2 2x \, dx = \int \frac{1 - \cos 4x}{2} \, dx = \frac{1}{2} \left( x - \frac{\sin 4x}{4} \right) + c.
\]
Evaluate:
\[
2 \cdot \frac{1}{2} \left[ x - \frac{\sin 4x}{4} \right]_0^{\pi/2} = \left[ x - \frac{\sin 4x}{4} \right]_0^{\pi/2} = \left( \frac{\pi}{2} - \frac{\sin 2\pi}{4} \right) - (0 - 0) = \frac{\pi}{2}.
\]
Answer: \( \frac{\pi}{2} \).