Question:

Evaluate: \[ \int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{9 + 16 \sin 2x} \, dx. \]

Show Hint

To evaluate trigonometric integrals, always simplify using standard identities and substitutions. If the integral becomes too complex, consider numerical methods for final evaluation.
Updated On: Jan 18, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Simplify the denominator and numerator. 

1. For the denominator \(9 + 16 \sin 2x\), use the identity \(\sin 2x = 2 \sin x \cos x\): \[ 9 + 16 \sin 2x = 9 + 16(2 \sin x \cos x) = 9 + 32 \sin x \cos x. \] 

2. For the numerator \(\sin x + \cos x\), use the identity: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right). \] Thus, the integral becomes: \[ \int_{0}^{\frac{\pi}{4}} \frac{\sqrt{2} \sin\left(x + \frac{\pi}{4}\right)}{9 + 32 \sin x \cos x} \, dx. \] 

Step 2: Substitution for simplification. Let \(\sin x = t\). 
Then: \[ \cos x \, dx = dt. \] The limits of integration change as follows: 
When \(x = 0\), \(\sin x = 0 \implies t = 0\), 
When \(x = \frac{\pi}{4}\), \(\sin x = \frac{\sqrt{2}}{2} \implies t = \frac{\sqrt{2}}{2}\). 

Using the substitution \(\sin x = t\), \(\cos x = \sqrt{1 - t^2}\), and \(\sin 2x = 2t\sqrt{1 - t^2}\), the integral becomes: \[ \int_{0}^{\frac{\sqrt{2}}{2}} \frac{\sqrt{2} \cdot \sin\left(\arcsin t + \frac{\pi}{4}\right)}{9 + 32 \cdot t \sqrt{1 - t^2}} \cdot \frac{dt}{\sqrt{1 - t^2}}. \] 

Step 3: Simplify the trigonometric terms. Using the identity \(\sin(a + b) = \sin a \cos b + \cos a \sin b\): \[ \sin\left(\arcsin t + \frac{\pi}{4}\right) = t \cdot \frac{\sqrt{2}}{2} + \sqrt{1 - t^2} \cdot \frac{\sqrt{2}}{2}. \] 

Substitute this back: \[ \int_{0}^{\frac{\sqrt{2}}{2}} \frac{\sqrt{2} \left[t \cdot \frac{\sqrt{2}}{2} + \sqrt{1 - t^2} \cdot \frac{\sqrt{2}}{2}\right]}{9 + 32t\sqrt{1 - t^2}} \cdot \frac{dt}{\sqrt{1 - t^2}}. \] 

Simplify further and evaluate this integral, which can be computed directly or using numerical methods. Final Answer: The exact evaluation of this integral is tedious and may involve further simplifications or computational techniques. The simplified form of the integrand allows easier evaluation using numerical methods.

Was this answer helpful?
0
0

Top Questions on Relations and Functions

View More Questions