Step 1: Simplify the denominator and numerator.
1. For the denominator \(9 + 16 \sin 2x\), use the identity \(\sin 2x = 2 \sin x \cos x\): \[ 9 + 16 \sin 2x = 9 + 16(2 \sin x \cos x) = 9 + 32 \sin x \cos x. \]
2. For the numerator \(\sin x + \cos x\), use the identity: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right). \] Thus, the integral becomes: \[ \int_{0}^{\frac{\pi}{4}} \frac{\sqrt{2} \sin\left(x + \frac{\pi}{4}\right)}{9 + 32 \sin x \cos x} \, dx. \]
Step 2: Substitution for simplification. Let \(\sin x = t\).
Then: \[ \cos x \, dx = dt. \] The limits of integration change as follows:
When \(x = 0\), \(\sin x = 0 \implies t = 0\),
When \(x = \frac{\pi}{4}\), \(\sin x = \frac{\sqrt{2}}{2} \implies t = \frac{\sqrt{2}}{2}\).
Using the substitution \(\sin x = t\), \(\cos x = \sqrt{1 - t^2}\), and \(\sin 2x = 2t\sqrt{1 - t^2}\), the integral becomes: \[ \int_{0}^{\frac{\sqrt{2}}{2}} \frac{\sqrt{2} \cdot \sin\left(\arcsin t + \frac{\pi}{4}\right)}{9 + 32 \cdot t \sqrt{1 - t^2}} \cdot \frac{dt}{\sqrt{1 - t^2}}. \]
Step 3: Simplify the trigonometric terms. Using the identity \(\sin(a + b) = \sin a \cos b + \cos a \sin b\): \[ \sin\left(\arcsin t + \frac{\pi}{4}\right) = t \cdot \frac{\sqrt{2}}{2} + \sqrt{1 - t^2} \cdot \frac{\sqrt{2}}{2}. \]
Substitute this back: \[ \int_{0}^{\frac{\sqrt{2}}{2}} \frac{\sqrt{2} \left[t \cdot \frac{\sqrt{2}}{2} + \sqrt{1 - t^2} \cdot \frac{\sqrt{2}}{2}\right]}{9 + 32t\sqrt{1 - t^2}} \cdot \frac{dt}{\sqrt{1 - t^2}}. \]
Simplify further and evaluate this integral, which can be computed directly or using numerical methods. Final Answer: The exact evaluation of this integral is tedious and may involve further simplifications or computational techniques. The simplified form of the integrand allows easier evaluation using numerical methods.
During the festival season, a mela was organized by the Resident Welfare Association at a park near the society. The main attraction of the mela was a huge swing, which traced the path of a parabola given by the equation:\[ x^2 = y \quad \text{or} \quad f(x) = x^2 \]
On the basis of the following hypothetical data, calculate the percentage change in Real Gross Domestic Product (GDP) in the year 2022 – 23, using 2020 – 21 as the base year.
Year | Nominal GDP | Nominal GDP (Adjusted to Base Year Price) |
2020–21 | 3,000 | 5,000 |
2022–23 | 4,000 | 6,000 |