Step 1: Simplify \(\sin 2x\).
Using the identity \(\sin 2x = 2 \sin x \cos x\), rewrite the integral: \[ \int_{0}^{\frac{\pi}{2}} \sin 2x \tan^{-1}(\sin x) \, dx = \int_{0}^{\frac{\pi}{2}} 2 \sin x \cos x \tan^{-1}(\sin x) \, dx. \]
Step 2: Substitution. Let \(t = \sin x\). Then: \[ \cos x \, dx = dt, \quad \text{and} \quad \sin x = t. \] The limits of integration change as follows: - When \(x = 0\), \(\sin x = 0 \implies t = 0\),
When \(x = \frac{\pi}{2}\), \(\sin x = 1 \implies t = 1\). The integral becomes: \[ \int_{0}^{\frac{\pi}{2}} 2 \sin x \cos x \tan^{-1}(\sin x) \, dx = \int_{0}^{1} 2t \tan^{-1}(t) \, dt. \]
Step 3: Integration by parts. To evaluate \(\int 2t \tan^{-1}(t) \, dt\), use integration by parts: \[ \text{Let } u = \tan^{-1}(t), \quad dv = 2t \, dt. \] Then: \[ du = \frac{1}{1 + t^2} \, dt, \quad v = t^2. \]
Using the formula for integration by parts \(\int u \, dv = uv - \int v \, du\): \[ \int 2t \tan^{-1}(t) \, dt = t^2 \tan^{-1}(t) - \int t^2 \cdot \frac{1}{1 + t^2} \, dt. \]
Step 4: Simplify the remaining integral. Simplify \(\int \frac{t^2}{1 + t^2} \, dt\): \[ \frac{t^2}{1 + t^2} = 1 - \frac{1}{1 + t^2}. \] Thus: \[ \int \frac{t^2}{1 + t^2} \, dt = \int 1 \, dt - \int \frac{1}{1 + t^2} \, dt. \]
Evaluate each term: \[ \int 1 \, dt = t, \quad \int \frac{1}{1 + t^2} \, dt = \tan^{-1}(t). \] Substitute back: \[ \int \frac{t^2}{1 + t^2} \, dt = t - \tan^{-1}(t). \]
Step 5: Final expression.
Substitute back into the integral: \[ \int 2t \tan^{-1}(t) \, dt = t^2 \tan^{-1}(t) - \left(t - \tan^{-1}(t)\right). \] Simplify: \[ \int 2t \tan^{-1}(t) \, dt = t^2 \tan^{-1}(t) - t + \tan^{-1}(t). \] Step 6: Apply limits of integration.
Evaluate from \(t = 0\) to \(t = 1\): \[ \int_{0}^{1} 2t \tan^{-1}(t) \, dt = \left[ t^2 \tan^{-1}(t) - t + \tan^{-1}(t) \right]_{0}^{1}. \] At \(t = 1\): \[ 1^2 \tan^{-1}(1) - 1 + \tan^{-1}(1) = 1 \cdot \frac{\pi}{4} - 1 + \frac{\pi}{4} = \frac{\pi}{4} - 1 + \frac{\pi}{4} = \frac{\pi}{2} - 1. \] At \(t = 0\): \[ 0^2 \tan^{-1}(0) - 0 + \tan^{-1}(0) = 0. \] Thus: \[ \int_{0}^{1} 2t \tan^{-1}(t) \, dt = \frac{\pi}{2} - 1 - 0 = \frac{\pi}{2} - 1. \]
Final Answer: \[ \int_{0}^{\frac{\pi}{2}} \sin 2x \tan^{-1}(\sin x) \, dx = \frac{\pi}{2} - 1. \]
A compound (A) with molecular formula $C_4H_9I$ which is a primary alkyl halide, reacts with alcoholic KOH to give compound (B). Compound (B) reacts with HI to give (C) which is an isomer of (A). When (A) reacts with Na metal in the presence of dry ether, it gives a compound (D), C8H18, which is different from the compound formed when n-butyl iodide reacts with sodium. Write the structures of A, (B), (C) and (D) when (A) reacts with alcoholic KOH.