Question:

Evaluate: \(\displaystyle \int \sqrt{a^2 - x^2} \, dx = \)

Show Hint

For integrals involving \(\sqrt{a^2 - x^2}\), use the formula: \[ \int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + c \] Alternatively, try the substitution \( x = a \sin \theta \).
  • \( 2x \sqrt{a^2 - x^2} + c \)
  • \( \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + c \)
  • \( 2x \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + c \)
  • \( 2x \sqrt{x^2 - a^2} - \frac{a^2}{2} \sin^{-1} \frac{x}{a} + c \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Recall the formula: \[ \int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + c \] Step 2: This can be derived by using integration by parts or trigonometric substitution.
Was this answer helpful?
0
0