Step 1: Use partial fractions:
\[
\frac{1}{x(x+2)} = \frac{A}{x} + \frac{B}{x+2}
\]
Multiply both sides by \( x(x+2) \):
\[
1 = A(x+2) + Bx = (A+B)x + 2A
\]
Step 2: Equate coefficients:
\[
A + B = 0, \quad 2A = 1 \Rightarrow A = \frac{1}{2}, \quad B = -\frac{1}{2}
\]
Step 3: Rewrite integral:
\[
\int \frac{dx}{x(x+2)} = \int \left( \frac{1/2}{x} - \frac{1/2}{x+2} \right) dx = \frac{1}{2} \int \frac{dx}{x} - \frac{1}{2} \int \frac{dx}{x+2}
\]
Step 4: Integrate:
\[
= \frac{1}{2} \log|x| - \frac{1}{2} \log|x+2| + c = \frac{1}{2} \log \left| \frac{x}{x+2} \right| + c
\]
Step 5: Or equivalently,
\[
= \frac{1}{2} \log \left| \frac{x}{x+2} \right| + c = -\frac{1}{2} \log \left| \frac{x+2}{x} \right| + c
\]
Depending on sign convention.